K-均值聚类(Python3)1. K均值算法K-均值是发现给定数据集的个簇的算法。簇个数是由用户给定的,每个簇通过其质心(centroid),即簇中所有点的中心来描述。给定样本集,“均值”(-means)算法所得簇划分最小化平方误差 其中是簇的均值向量。直观来看,上式在一定程度上刻画了簇内样本围绕簇均值向量的紧密程度,值越小则簇内样本相似度越高。工作流程:创建k个点作为起始质心(经常是随机选择)
K均值聚类参考博客:opencv K均值聚类(python)Kmeans图像分割实践聚类能够将具有相似属性的对象划分到同一个集合(簇)中。聚类方法能够应用于所有对象,簇内的对象越相似,聚类算法的效果越好。K均值聚类的基本步骤K均值聚类是一种将输入数据划分为k个簇的简单的聚类算法,该算法不断提取当前分类的中心点(也称为质心或重心),并最终在分类稳定时完成聚类。从本质上说,K均值聚类是一种迭代算法。在
引言:图像分割是目前图像处理领域中的一大热点问题,该领域随着处理技术的不断发展,分为两大类,一类是传统分割方法,一类是基于深度学习的分割方法。随着深度学习的火热,传统的提携分割算法也遮住了其光芒所在,今天和大家一起看一下关于传统分割的方法。开始:1.基于阈值的分割方法:         该方法的思想较为简单,就是在图像像素灰度值的基础上进行,利用像素的灰度值
转载 2023-07-02 22:15:49
116阅读
背景与原理:聚类问题与分类问题有一定的区别,分类问题是对每个训练数据,我给定了类别的标签,现在想要训练一个模型使得对于测试数据能输出正确的类别标签,更多见于监督学习;而聚类问题则是我们给出了一组数据,我们并没有预先的标签,而是由机器考察这些数据之间的相似性,将相似的数据聚为一类,是无监督学习的一个典型应用。而k-means算法则是非常常见的聚类算法,其思想是如果我们想把这些数据聚为k类,那么我们预
转载 2024-06-07 11:49:21
31阅读
在数据分析中,缺失值处理是至关重要的环节。尤其是在处理大数据集时,缺失数据可能会影响模型的准确性与可用性。为了解决这个问题,K邻近算法(KNN)是一种常见的方法,能够有效地填补缺失值。接下来,我将详细记录使用 Python K邻近算法替换缺失值的整个过程,涵盖技术原理、架构解析、源码分析、应用场景以及扩展讨论。 在进行任何数据处理之前,了解问题的背景至关重要。缺失值的存在可能源于多种因素,比如数
原创 6月前
95阅读
k-近邻算法的Python实现一、概述k-近邻算法(k-Nearest Neighbour algorithm),又称为KNN算法,是数据挖掘技术中原理最简单的算法。KNN的工作原理:给定一个已知标签类别的训练数据集,输入没有标签的新数据后,在训练数据集中找到与新数据最邻近的k个实例,如果这k个实例的多数属于某个类别,那么新数据就属于这个类别。可以简单理解为:由那些离X最近的k个点来投票决定X归为
上节我们简单介绍了K近邻算法的使用方法,本节我们继续介绍K近邻算法用于回归,本次我们使用wave数据集来进行测试,我们分别选取2个和5个邻居来看一下wave数据的预测结果,对应的代码如下:import mglearnfrom sklearn.model_selection import train_test_splitmglearn.plots.plot_knn_regression(n_neig
# Python 字典索引:基础与应用 在Python中,字典(Dictionary)是一种内置的数据类型,它以键-值对的方式存储数据。这种数据结构具有快速查找和灵活操作的特性,因此在日常编程中非常有用。在这篇文章中,我们将探讨如何使用字典索引,并附上相关的代码示例,帮助大家更好地理解和应用这一概念。 ## 什么是字典? 字典是一种无序的可变集合,它是由一组键(Key)和值(Value)构成
原创 2024-08-23 08:42:20
14阅读
Mean Shift,我们 翻译为“均值飘移”。其在聚类,图像平滑。图像分割和跟踪方面得到了比较广泛的应用。由于本人目前研究跟踪方面的东西,故此主要介绍利用Mean Shift方法进行目标跟踪,从而对MeanShift有一个比较全面的介绍。     (以下某些部分转载常峰学长的“Mean Shift概述”) Mean Shift 这个概念
转载 2024-07-04 15:20:09
52阅读
一、算法简介 均值漂移算法首先找到一个中心点center(随机选择),然后根据半径划分一个范围把这个范围内的点输入簇c的标记个数加1在这个范围内,计算其它点到这个点的平均距离,并把这个平均距离当成偏移量 shift把中心点center移动偏移量 shift 个单位,当成新的中心点重复上述步骤直到 shift小于一定阈值,即收敛如果当前簇c的center和另一个簇c2的center距离小于
转载 2023-05-18 15:45:47
400阅读
以下内容摘自百度百科。K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。k-means 算法缺点① 在 K-means 算法中 K 是事先给定的,这个 K 值的选定是非常难以估计的。很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。这也是 K-means 算法的一个不足。有
1、均值滤波均值滤波,是最简单的一种滤波操作,输出图像的每一个像素是核窗口内输入图像对应像素的像素的平均值( 所有像素加权系数相等),其实说白了它就是归一化后的方框滤波。下面开始讲均值滤波的内容吧。⑴均值滤波的理论简析均值滤波是典型的线性滤波算法,主要方法为邻域平均法,即用一片图像区域的各个像素的均值来代替原图像中的各个像素值。一般需要在图像上对目标像素给出一个模板(内核),该模板包括了其周围的临
背景Meanshift算法是Fukunaga于1975年提出的,其基本思想是利用概率密度的梯度爬升来寻找局部最优。1995年,YizongCheng针对离x越近的采样点对x周围的统计特性越有效,定义了一族核函数,并根据所有样本点的重要性不足,设定了一个权重系数,扩大了Meanshift的使用范围。原理给定d维空间中的n个样本点( = 1,…,),在x点的Meanshift向量的基本形式定义为:其中
                   聚类分析中存在一种方法:‘模糊C均值’,模糊C均值的发现,要感谢模糊数学之父“扎德”老爷子,他老人家当年提出了“模糊集合论”和“模糊逻辑”,介绍算法之前,先简单的补充一些相关的知识点.&nbs
转载 2023-07-24 15:30:59
82阅读
KNN算法的直观理解它基于这样的简单假设:彼此靠近的点更有可能属于同一个类别。用大俗话来说就是『臭味相投』,或者说『近朱者赤,近墨者黑』。 它并未试图建立一个显示的预测模型,而是直接通过预测点的临近训练集点来确定其所属类别。K近邻算法的实现主要基于三大基本要素:K的选择;距离度量方法的确定;分类决策规则。下面,即围绕这三大基本要素,探究它的分类实现原理。 KNN算法的原理算法步骤K近邻算法的实
下面我会介绍  在sklearn 的knn-api函数 ,然后  k近邻的算法步骤  ,使用  k近邻的思想过程  ,然后举几个使用k近邻算法的例子API 使用class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights=’uniform’, a
转载 2023-12-28 15:14:17
103阅读
一、K-Means算法流程K均值算法是学习无监督学习的第一个算法,这个算法理解和实现都比较简单,算法的目的是将数据分成K组。为了达到这个目的,算法首先随机初始化k个数据点(聚类中心),然后遍历所有数据,计算出每一个数据到k个点的距离,找到最小的距离,则该点属于这个类。之后计算每一组中的平均值,然后更新聚类中心,直到中心点不再发生变化。下面是算法的运行过程:输入:没有标签的数据X,大小为m,要将数据
均值漂移(Meanshift)算法理解1.均值漂移的基本概念:沿着密度上升方向寻找聚簇点设想在一个有N个样本点的特征空间初始确定一个中心点center,计算在设置的半径为D的圆形空间内所有的点(xi)与中心点center的向量计算整个圆形空间内所有向量的平均值,得到一个偏移均值将中心点center移动到偏移均值位置重复移动,直到满足一定条件结束 2.均值漂移运算:2.1 Mean shi
值漂移算法是一种基于密度梯度上升的非参数方法,它经常被应用在图像识别中的目标跟踪,数据聚类,分类等场景。其核心思想是:首先随便选择一个中心点,然后计算该中心点一定范围之内所有点到中心点的距离向量的平均值,计算该平均值得到一个偏移均值,然后将中心点移动到偏移均值位置(另一种理解:在d维空间中,任选一个点,然后以这个点为圆心,h为半径做一个高维球,因为有d维,d可能大于2,所以是高维球。落在这个球内的
目录1 算法简介2 算法计算步骤3 代码实现补充知识点:K近邻算法回归模型4 案例:手写数字识别模型4.1 手写数字识别原理4.1.1 图像二值化4.1.3 距离计算4.2 代码实现5 图像识别原理简介5.1 图片大小调整及显示5.2 图像灰度处理5.3 图片二值化处理5.4 将二维数组转
  • 1
  • 2
  • 3
  • 4
  • 5