建造模型1、建造模型,拖拽工具箱插值分析中的克里金分析2、设置数据源shp(数据源参数,x,y,value),右键模型,获取Z值(value值)3、右键数据源,Z值,输出shp,获取模型参数(每一个右上角会显示字母P)4、验证后另存为模型5、在存储位置运行该模型,成功后在结果窗口中会显示6、右键结果窗口中的模型,共享为地图服务发布服务1、勾选参数选项卡中的异步及其下面地图服务结果,设置返回记录数大
转载
2023-10-13 19:48:56
178阅读
学过空间插值的人都知道克里金插值,但是它的变种繁多、公式复杂,还有个半方差函数让人不知所云 本文讲简单介绍基本克里金插值的原理,及其推理过程。 0.引言——从反距离插值(IDW)说起空间插值问题,就是在已知空间上若干离散点 (xi,yi) 的某一属性(如气温,海拔)的观测值 zi=z(xi,yi) 的条件下,估计空间上任意一点 (x,y)
转载
2024-01-18 19:21:06
107阅读
在大多数 GIS 文献资料中,区域插值特指数据从一组面(源面)到另一组面(目标面)的重新聚合。例如,人口统计学家经常需要缩减或扩大其数据的行政单位。如果按县的级别进行人口统计,人口统计学家可能需要缩减数据以预测人口普查区块中的人口数量。如果要在大比例下重新划分区块,可能需要对一组全新的面进行人口预测。 ArcGIS Geostatistical Analyst 扩展模块中的区域插值法是将克里
转载
2023-12-02 22:43:14
140阅读
作者: 养乐多_本文记录了在Google Earth Engine(GEE)平台上进行 Kriging 插值的介绍和代码案例。本文通过选取的2013年陕西省生物量样本点数据为例,利用 Kriging 插值对未知区域做了插值计算。Google Earth Engine(GEE)是一个用于分析地理空间数据的云平台,其中包含了许多地理空间分析工具和算法,其中就包括了Kriging插值方法。Kr
转载
2023-10-04 22:04:30
549阅读
基于python的站点数据Kriging插值绘图前言 科研中常常会将站点数据进行插值,绘制成图。常用的二维插值方法有最近邻法、线性内插法、三次样条内插法,此外还有一些基于地理的插值方法,如克里金插值法、IDW反距离加权法。今天我们就克里金插值法介绍一下使用python进行站点数据插值绘图的方法。模块介绍绘图模块 cartopy 、shpfile、matplotlib
插值模块:
对于简单的二维插值
转载
2023-05-26 21:12:50
955阅读
1.算法功能简介 克里金插值法基于一般最小二乘法的随机插值技术没用方差图作为权重函数,被应用于任何点数据估计其在地表上分布的现象,被称为空间自协方差最佳插值法,是一种最优内插法也是一种最常用的空间插值算法,例如地质学中的地下水位和土壤湿度的采样;环境科学研究中的大气污染(例如臭氧)和土壤污染物的研究;以及大气科学中的近地面风场、气温、降水等的单点观测。&nbs
转载
2023-07-25 18:47:21
374阅读
1.什么是克里金插值?克里金插值又称空间局部插值法,是以半变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一。南非矿产工程师D.R.Krige在寻找金矿时首次运用这种方法,法国著名统计学家G.Matheron随后将该方法理论化、系统化,并命名为Kriging,即克里金方法。——引自《地理信息系统空间分析实验教程》2.克里金插值的适用条件?区域
转载
2023-08-02 17:06:55
432阅读
插值分析概述 插值:用于根据采样点值创建连续(或预测)表面。(所有样本无法测量或成本太高,通过已有的样本预测其他空间情况)插值分类插值工具通常分为确定性方法和地统计方法。确定性插值方法将根据周围测量值和用于确定所生成表面平滑度的指定数学公式将值指定给位置。确定性插值方法包括:反距离权重法(inverse distance weighting,IDW)、自然邻域法、趋势面法和样条函数法。地
转载
2023-07-24 15:20:39
285阅读
官网地址:地统计:https://desktop.arcgis.com/zh-cn/arcmap/latest/extensions/geostatistical-analyst/what-is-geostatistics-.htm选择方法:https://desktop.arcgis.com/zh-cn/arcmap/latest/extensions/geostatistical-analys
转载
2023-10-11 11:30:02
222阅读
本次分享是在上一期的基础上将克里金差值结果进行输出为tif 文章目录一、数据介绍二、代码部分1. 克里金差值部分2. tif文件生成部分三. 分步讲解1. 库函数引用2. 温度数据读取并插值3.transform生成4.tif文件生成5. tif文件裁剪 一、数据介绍本期使用的数据依然为上一期的所使用的fake数据二、代码部分1. 克里金差值部分克里金差值的核心部分依然是上次所说的Ordinary
转载
2024-02-06 22:04:04
107阅读
1、插值算法,讲座人:邓书莉 时间: 2010年12月9日 编写排版:邓书莉,插值算法,插值的定义 一维插值算法 最邻近插值 线性插值 拉格朗日插值 牛顿插值 埃尔米特插值 三次样条插值,二维插值算法 最邻近插值 双线性插值 三次卷积插值,插值的定义,设函数y=f(x)在区间a,b上有定义,且已知在点ax0x1xnb上的值为y0,y1,yn,若存在简单函数P(x)使得 P(xi)=yi (i=0,
转载
2024-01-30 20:54:06
30阅读
该部分是基于克里金插值(Kriging)在MATLAB中的实现(克里金工具箱),由于在运行过程中有部分问题,基于此做的一些理解+优化。工具箱的下载见上面的链接,其提供了工具箱。clc
clear
load('data_kriging.mat') %载入数据;我在这里将工具箱中的data1替换了名字
%模型参数设置,无特殊情况不需修改,见说明书
theta = [10 10]; lob = [
转载
2023-08-01 16:50:49
731阅读
这里写目录标题三、克里金插值(Kriging)1.概念2.分类3.半变异函数4.ArcGIS中相关参数设置5.普通克里金6.泛克里金(通用克里金)7.总结 三、克里金插值(Kriging)1.概念是一种基于统计学的插值方法。与“ArcGIS的栅格数据空间分析——栅格插值(1)”中介绍的前两种插值方法不同的是,Kriging可用估计的预测误差来评估预测的质量。2.分类普通克里金、泛克里金3.半变异函
转载
2023-10-27 10:28:29
218阅读
本篇接着上篇继续介绍克里金插值。首先加载相关工具包和上篇使用的示例数据:library(gstat)
library(sf)
library(tidyverse)
library(readxl)
load("G:/RStudies/空间插值/wh.rdata")
load("G:/RStudies/空间插值/stations.rdata")
data <- read_xlsx("G:/RSt
转载
2023-08-04 16:14:50
382阅读
克里金插值是一种基于变异函数理论和结构分析的线性、无偏插值,在地理信息和气象学方面有着广泛的应用,如进行空间高程的插值、气温的插值,克里金插值的原理和过程可以参考(http://desktop.arcgis.com/zh-cn/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging-works.htm) ,下面以插值高程为例演示ArcGIS克里金插值的详细
转载
2023-08-28 14:09:26
648阅读
项目中要用到克里金插值法,大致了解了一下,今天做个笔记总结一下(有错误请评论指正)关于克里金插值法,在我看来就是加强版的反距离加权,只不过他的权重系数的确定,复杂一点,是带着你自己的空间模型的分布特性,比如说你要用在气象领域,则权重系数和地质的就是完全不相同的。我对于克里金方法的理解,认为他的算法可以分成五步(前提是你的模型已确定),第一步是求出每两个已知点之间的距离A,然后带入模型算法中求出对应
转载
2023-11-11 10:47:38
120阅读
说明:昨天的推文误把可吸入颗粒物当作PM2.5,实应该为PM10,这里修正后重发。从本篇开始计划分三篇介绍克里金插值。与反距离权重插值不同,克里金插值是无偏估计,其中也涉及到模型估计。本篇先对普通克里金的原理进行简单介绍,然后重点介绍在R语言中进行克里金插值的步骤。library(gstat)1 示例数据本篇主要对武汉市主城区范围的空气质量监测点数据进行插值。加载空间矢量对象:library(sf
转载
2023-10-25 14:50:07
43阅读
今天来讲如何在GEE里实现克里金插值~克里金插值法,又称空间局部统计或空间局部插值,是地统计学的主要内容。其基本原理在此不表,本篇内容主要讲如何通过GEE来实现克里金插值。如果想看原理,可以点这里大致了解1. 先放出源代码链接(点这里)和函数文档链接(点这里)
2. 函数用法2.1 引用库第一步你需要在代码开头写下以下内容来引用大佬的库var oeel=require('users/OEEL/li
转载
2023-09-15 23:50:21
150阅读
本文目录前言Step 1 调出地统计分析工具Step 2 克里金插值设置Step 3 调整图幅范围及裁剪Step 4 转为栅格文件并保存 前言在进行MIKE水动力建模之初,需要准备好水深数据,之前有在【MIKE水动力笔记1_岸线及水深数据之依靠全球数据库资源提取的方法】和【MIKE水动力笔记3_岸线及水深数据之根据遥感影像绘制岸线的方法】中提到过一些这部分内容,但之前没有具体讲解如何数字化海图,于
转载
2024-07-03 11:49:25
73阅读
# Python克里金插值
## 1. 引言
克里金插值是一种地理空间数据插值方法,它基于局部函数模型来估计未知位置的数值。克里金插值在地理信息系统、地质学、环境科学等领域得到广泛应用。Python提供了多种克里金插值的库,本文将使用SciPy库来演示克里金插值的基本原理和实现过程。
## 2. 克里金插值原理
克里金插值基于“空间自相关性”假设,即相邻点的数值之间存在相关性。插值过程主要
原创
2023-07-14 03:54:02
1079阅读