本文目录前言Step 1 调出地统计分析工具Step 2 克里金插值设置Step 3 调整图幅范围及裁剪Step 4 转为栅格文件并保存 前言在进行MIKE水动力建模之初,需要准备好水深数据,之前有在【MIKE水动力笔记1_岸线及水深数据之依靠全球数据库资源提取的方法】和【MIKE水动力笔记3_岸线及水深数据之根据遥感影像绘制岸线的方法】中提到过一些这部分内容,但之前没有具体讲解如何数字化海图,于            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-07-03 11:49:25
                            
                                73阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            目录1.Arcmap克里金法的工作原理:2.Kriging From Wikipedia:[https://en.wikipedia.org/wiki/Kriging](https://en.wikipedia.org/wiki/Kriging)3.实例分析4.代码部分5.较好的案例 1.Arcmap克里金法的工作原理:https://desktop.arcgis.com/zh-cn/arcma            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-12-11 20:52:37
                            
                                237阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            最近因为项目需要,研究了下克里金插值算法。在地质学中,克里金插值算法是一种使用的空间属性估计技术,克里金插值说到底是个回归问题,且依据的因素只有两个位置之间的距离。 
 
  克里金插值算法又分为很多中,比如普通克里金插值,简单克里金插值等,不同的克里金插值算法只是假设条件不同。下面以普通克里金为例来说明其原理。 
 
  普通克里金插值算法的假设条件是:空间属性是均匀的,对于空间任意一点(            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-09-06 18:54:25
                            
                                79阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            在本篇博文中,我们将深入探讨如何在 Python 中实现普通克里金法插值。这是一种广泛应用于地理信息系统(GIS)、环境科学以及数据科学领域的插值方法。我们将通过一系列的技术细节和实际的代码示例,来详细说明实现过程中的各个环节。
首先,让我们看看我们需要的环境,以及相关的硬件和软件要求。
### 环境预检
为了顺利运行 Python 普通克里金法插值,我们需要确保我们的环境符合以下要求:            
                
         
            
            
            
            # 普通克里金插值法及其 Python 实现
在许多科学与工程领域中,地理数据的插值是非常重要的一环,尤其是在气象、地质和环境科学等领域。插值的目的是通过已知的数据点,预测未知点的数值。普通克里金插值法是一种基于统计学的插值方法,尤其适用于空间数据的分析。本文将深入探讨普通克里金插值法的原理、Python代码示例及其应用。
## 一、普通克里金插值法简介
普通克里金插值法是一种序贯数据插值技            
                
                    
                        
                                                            
                                                                        
                                                                                        原创
                                                                                    
                            2024-09-19 08:13:35
                            
                                171阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            基于python的站点数据Kriging插值绘图前言	科研中常常会将站点数据进行插值,绘制成图。常用的二维插值方法有最近邻法、线性内插法、三次样条内插法,此外还有一些基于地理的插值方法,如克里金插值法、IDW反距离加权法。今天我们就克里金插值法介绍一下使用python进行站点数据插值绘图的方法。模块介绍绘图模块 cartopy 、shpfile、matplotlib
插值模块:
对于简单的二维插值            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-05-26 21:12:50
                            
                                955阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            ArcGIS Python 实现普通克里金插值
在地理空间数据分析中,克里金插值是一种被广泛应用的空间插值方法。通过使用 ArcGIS 和 Python,我们可以轻松地实现这一算法。本文将详细介绍如何在 ArcGIS 环境下使用 Python 来实现普通克里金插值,从背景到技术原理,再到具体实现和案例分析,确保读者对整个过程有清晰的理解。
### 背景描述
普通克里金插值法的发展可以追溯到            
                
         
            
            
            
            建造模型1、建造模型,拖拽工具箱插值分析中的克里金分析2、设置数据源shp(数据源参数,x,y,value),右键模型,获取Z值(value值)3、右键数据源,Z值,输出shp,获取模型参数(每一个右上角会显示字母P)4、验证后另存为模型5、在存储位置运行该模型,成功后在结果窗口中会显示6、右键结果窗口中的模型,共享为地图服务发布服务1、勾选参数选项卡中的异步及其下面地图服务结果,设置返回记录数大            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-10-13 19:48:56
                            
                                180阅读
                            
                                                                             
                 
                
                             
         
            
            
            
             1.算法功能简介    克里金插值法基于一般最小二乘法的随机插值技术没用方差图作为权重函数,被应用于任何点数据估计其在地表上分布的现象,被称为空间自协方差最佳插值法,是一种最优内插法也是一种最常用的空间插值算法,例如地质学中的地下水位和土壤湿度的采样;环境科学研究中的大气污染(例如臭氧)和土壤污染物的研究;以及大气科学中的近地面风场、气温、降水等的单点观测。&nbs            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-07-25 18:47:21
                            
                                374阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            学过空间插值的人都知道克里金插值,但是它的变种繁多、公式复杂,还有个半方差函数让人不知所云 本文讲简单介绍基本克里金插值的原理,及其推理过程。 0.引言——从反距离插值(IDW)说起空间插值问题,就是在已知空间上若干离散点 (xi,yi) 的某一属性(如气温,海拔)的观测值 zi=z(xi,yi) 的条件下,估计空间上任意一点 (x,y)            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-01-18 19:21:06
                            
                                107阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            1.什么是克里金插值?克里金插值又称空间局部插值法,是以半变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一。南非矿产工程师D.R.Krige在寻找金矿时首次运用这种方法,法国著名统计学家G.Matheron随后将该方法理论化、系统化,并命名为Kriging,即克里金方法。——引自《地理信息系统空间分析实验教程》2.克里金插值的适用条件?区域            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-02 17:06:55
                            
                                432阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            插值分析概述 插值:用于根据采样点值创建连续(或预测)表面。(所有样本无法测量或成本太高,通过已有的样本预测其他空间情况)插值分类插值工具通常分为确定性方法和地统计方法。确定性插值方法将根据周围测量值和用于确定所生成表面平滑度的指定数学公式将值指定给位置。确定性插值方法包括:反距离权重法(inverse distance weighting,IDW)、自然邻域法、趋势面法和样条函数法。地            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-07-24 15:20:39
                            
                                288阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            本次分享是在上一期的基础上将克里金差值结果进行输出为tif 文章目录一、数据介绍二、代码部分1. 克里金差值部分2. tif文件生成部分三. 分步讲解1. 库函数引用2. 温度数据读取并插值3.transform生成4.tif文件生成5. tif文件裁剪 一、数据介绍本期使用的数据依然为上一期的所使用的fake数据二、代码部分1. 克里金差值部分克里金差值的核心部分依然是上次所说的Ordinary            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-02-06 22:04:04
                            
                                107阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            官网地址:地统计:https://desktop.arcgis.com/zh-cn/arcmap/latest/extensions/geostatistical-analyst/what-is-geostatistics-.htm选择方法:https://desktop.arcgis.com/zh-cn/arcmap/latest/extensions/geostatistical-analys            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-10-11 11:30:02
                            
                                222阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            1、插值算法,讲座人:邓书莉 时间: 2010年12月9日 编写排版:邓书莉,插值算法,插值的定义 一维插值算法 最邻近插值 线性插值 拉格朗日插值 牛顿插值 埃尔米特插值 三次样条插值,二维插值算法 最邻近插值 双线性插值 三次卷积插值,插值的定义,设函数y=f(x)在区间a,b上有定义,且已知在点ax0x1xnb上的值为y0,y1,yn,若存在简单函数P(x)使得 P(xi)=yi (i=0,            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-01-30 20:54:06
                            
                                30阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            该部分是基于克里金插值(Kriging)在MATLAB中的实现(克里金工具箱),由于在运行过程中有部分问题,基于此做的一些理解+优化。工具箱的下载见上面的链接,其提供了工具箱。clc
clear
load('data_kriging.mat')  %载入数据;我在这里将工具箱中的data1替换了名字
%模型参数设置,无特殊情况不需修改,见说明书
theta = [10 10]; lob = [            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-01 16:50:49
                            
                                736阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            本篇接着上篇继续介绍克里金插值。首先加载相关工具包和上篇使用的示例数据:library(gstat)
library(sf)
library(tidyverse)
library(readxl)
load("G:/RStudies/空间插值/wh.rdata")
load("G:/RStudies/空间插值/stations.rdata")
data <- read_xlsx("G:/RSt            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-04 16:14:50
                            
                                382阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            这里写目录标题三、克里金插值(Kriging)1.概念2.分类3.半变异函数4.ArcGIS中相关参数设置5.普通克里金6.泛克里金(通用克里金)7.总结 三、克里金插值(Kriging)1.概念是一种基于统计学的插值方法。与“ArcGIS的栅格数据空间分析——栅格插值(1)”中介绍的前两种插值方法不同的是,Kriging可用估计的预测误差来评估预测的质量。2.分类普通克里金、泛克里金3.半变异函            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-10-27 10:28:29
                            
                                220阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
              在大多数 GIS 文献资料中,区域插值特指数据从一组面(源面)到另一组面(目标面)的重新聚合。例如,人口统计学家经常需要缩减或扩大其数据的行政单位。如果按县的级别进行人口统计,人口统计学家可能需要缩减数据以预测人口普查区块中的人口数量。如果要在大比例下重新划分区块,可能需要对一组全新的面进行人口预测。  ArcGIS Geostatistical Analyst 扩展模块中的区域插值法是将克里            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-12-02 22:43:14
                            
                                140阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            克里金插值是一种基于变异函数理论和结构分析的线性、无偏插值,在地理信息和气象学方面有着广泛的应用,如进行空间高程的插值、气温的插值,克里金插值的原理和过程可以参考(http://desktop.arcgis.com/zh-cn/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging-works.htm) ,下面以插值高程为例演示ArcGIS克里金插值的详细            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-28 14:09:26
                            
                                648阅读
                            
                                                                             
                 
                
                                
                    