卡方检验是以χ2分布为基础的一种常用假设检验方法,它的无效假设H0是:观察频数与期望频数没有差别。H0成立,基于此前提计算出χ2值,它表示观察值与理论值之间的偏离程度。根据χ2分布及自由度可以确定在H0假设成立的情况下获得当前统计量及更极端情况的概率P。如果当前统计量大于P值,说明观察值与理论值偏离程度太大,应当拒绝无效假设,表示比较资料之间有显著差异;否则就不能拒绝无效假设,尚不能认为样本所代表
转载
2023-12-15 09:30:34
380阅读
前言【1.卡方检验的简单原理和前提条件】【2.卡方检验的数据实例】【3.卡方检验代码以及残差分析】关于“参数检验”和“非参数检验”的不同,请参考以下文章。【统计学】参数检验和非参数检验的区别和基本统计学1.卡方检验的简单原理和前提条件 卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,如果卡方值越大,二者偏差程度越大;反
1、卡方检验理论1.1、 简介总体的分布函数完全未知或只知形式、但不知其参数的情况,为了推断总体的某些未知特性,提出某些关于总体的假设。我们要根据样本对所提出的假设作出是接受,还是拒绝的决策。假设检验是作出这一决策的过程。卡方检验即是假设检验的一种。1.2、卡方检验基本思想首先假设H0成立,基于此前提计算出χ2值,它表示观察值与理论值之间的偏离程度。根据χ2分布及自由度可以确定在H0假
转载
2023-10-01 21:36:09
298阅读
数理统计———关于p值的看法与理解问题背景相关知识p值的产生过程对于p值及$\alpha$值的一些考虑p值的计算p值的缺点及前世今生 问题背景p值是数理统计假设检验中的一个重要概念,它的优点在于做检验(卡方检验,F检验,t检验,U检验)时不用事先确定显著性水平,我们知道显著性水平是接受或拒绝原假设的“态度坚决”的一个指标。一般的选择有0.1,0.05,0.01,事实上我们有无数个选择,但这显然也
转载
2023-12-15 05:42:10
132阅读
1. 卡方检验卡方检验是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,如果卡方值越大,二者偏差程度越大;反之,二者偏差越小;若两个值完全相等时,卡方值就为0,表明理论值完全
转载
2024-01-10 22:18:11
92阅读
统计学第七周一.知识回顾上周已经学习过正态分布/卡方分布/T分布等知识,但是如何选择那??正态分布?卡方分布?T分布二.实践1.场景:泰坦尼克号数据,主要是age年龄,Fare价格即船票价格,Embark登船的港口,需要验证数据是否服从正态分布,T分布,卡方分布?具体数据如下:IDAgeFareEmbarked1227.25S23871.2833C3267.925S43553.1S5358.05S
转载
2024-08-27 14:40:08
108阅读
6.4.2分布拟合的卡方检验(续)例
试在
水平下检验接受抗压强度的分布服从正态分布.
解 这个例子中没有原始数据,我们就用组中值来代替原始数据.即
.
我们已经计算过正态分布参数的极大似然估计为
参数的极大似然估计值分别为
进而得到分布函数的估计,而每个区间中概率的估计就是在两区间端点的分布函数值之差,即
一、算法思想1、特征选择特征选择是去除无关紧要或庸余的特征,仍然还保留其他原始特征,从而获得特征子集,从而以最小的性能损失更好地描述给出的问题。特征选择方法可以分为三个系列:过滤式选择、包裹式选择和嵌入式选择的方法 。本文介绍的卡方检验即为过滤式的特征选择算法。关于过滤式的特征算法系列,可参考我的其他文章。特征选择之互信息特征选择之Fisher Score2、卡方检验卡方检验介绍卡方是由英语"Ch
转载
2023-08-17 17:07:03
41阅读
卡方检验卡方检验是一种用途很广的计数资料的假设检验方法。它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。卡方检验的用途:1、检验某个连续变量的分布是否与某种理论分布相一致。例如是否符合正态分布,均匀分布,Poisson分布
2、检验某个分类变量的各类的概率是否等于指定概率
3、检验
转载
2023-06-16 15:05:48
491阅读
转载
2023-11-15 06:49:24
188阅读
卡方检验(chi square test)能够是一种假设性检验的方法,它能够检验两个分类变量之间是否是独立无关的。它通过观察实际值和理论值的偏差来确定原假设是否成立,它按照以下步骤来检验两个分类变量是否是独立的。无关性假设假如,有了一些新闻文章,这些新闻的文章已经标好了类别,所以可以得到以下统计的信息。通过下面的表格的第一行和第二行可以得出,文章的内容是否包含“篮球”的确对文章是否是体育类别的有统
转载
2024-01-24 11:32:54
53阅读
什么是卡方检验卡方检验是一种用途很广的基于卡方分布的假设检验方法,其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。其主要应用于分类变量,根据样本数据推断总体分布与期望分布是否有显著差异或推断两个分类变量是否相关或相互独立。卡方检验分类 卡方检验步骤卡方检验可以参照一般假设检验步骤:设置原假设与备择假设设置显著性水平根据问题选择具体的假设检验方式计算统计量
转载
2023-08-10 12:52:15
709阅读
对于 的列联表来说,第 行第 列单元的实际观测值我们可以记为 。另外,对于每一个单元,我们还有一个期望频数——如果我们的原假设是期望第 行第 列单元概率等于确定值 ,那么如果我们的样本总量为 ,那么第 行第 列单元的理想观测数应该为
转载
2024-08-12 11:31:17
98阅读
特征选择的常用方法之一是卡方检验,作为一个filter model的代表,卡方检验属于简单易计算的Feature weight algorithm(通过一定的measure方法给特征赋上一定的weight来表征与类别之间的相关度,通过weight大于一定阈值或选取topk个weight来进行特征选择)。卡方检验和信息增益是feature weight algorithm常用且效果较优的算法。卡方检
转载
2023-10-09 23:28:11
101阅读
什么是卡方检验卡方检验是一种用途很广的计数资料的假设检验方法。它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。卡方检验的基本原理卡方检验的基本思想卡方检验是以
转载
2023-11-07 12:39:16
90阅读
通常情况下,卡方检验是研究分类数据与分类数据之间关系的分析方法,如性别和是否戴隐形眼镜之间的关系。卡方检验通常会涉及卡方值和P值两个名词术语。卡方值与P值有对应关系,P值小于0.05则说明有差异存在,即性别与是否戴隐形眼镜之间有联系。在具体差异分析的基础上,进一步分析不同性别样本戴隐形眼镜的百分比,例如,男性戴隐形眼镜的百分比为30%,而女性戴隐形眼镜的百分比为50%,说明女性样本戴隐形眼镜的比例
转载
2023-10-24 09:37:14
216阅读
基于样本分布与理论分布之间的偏离程度构建统计量,得到一个统计量的抽样分布。判断样本分布与理论分布之间的偏离程度是抽样误差还是实质性变化,具体而言就是样本值与理论值之间的差值是抽样误差造成的还是本身就这样。令样本统计量(O)与总体真值(E)之间的差值作为统计量,用平方(O-E)来表现样本分布与理论分布之间的偏离程度,本来应该用绝对值,但是绝对值不好计算,此时采用平方数但仍有问题: &nbs
1 统计学上卡方检验卡方检验就是统计样本的理论频次和实际频次的吻合程度或拟合优度。卡方值越大,二者偏离程度就越大。卡方值为0,则表明与理论值完全相符。其计算公式如下:,其中,为实际值,为理论值。以喝牛奶和感冒发病率之间的数据为例,感冒不感冒合计感冒率喝牛奶439613930.94%不喝牛奶288411225.00%合计7118025128.29%其计算代码如下:import panda
转载
2023-10-17 17:04:16
308阅读
卡方检验,或称x2检验。无关性假设: 假设我们有一堆新闻或者评论,需要判断内容中包含某个词(比如6得很)是否与该条新闻的情感归属(比如正向)是否有关,我们只需要简单统计就可以获得这样的一个四格表:组别 属于正向 不属于正向 合计
不包含6得很 19 24 43
包含6得很 34 10 44
合计 53 34 87通过这个四格表我们得到的第一个信息是:内容是否包含某
转载
2023-08-18 09:00:05
199阅读
有小伙伴曾经提出过这样的疑问,从下图中SPSS菜单的两个入口进去,都是做卡方检验吗?两者有啥区别?点击Analyze → Descriptive Statistics → Crosstabs点击Analyze → Nonparametric Tests → Legacy Dialogs → Chi-square经常看医咖会文章的小伙伴应该会注意到,上面第一张图在卡方检验的教程中多次出现,详见:那第
转载
2023-09-13 18:01:53
150阅读