高斯牛顿法是一种用于非线性最小二乘问题的迭代法。在机器学习、数值分析等领域,它常被用于求解优化问题。下面将详细描述高斯牛顿法在Python中的实现过程。
## 环境准备
### 前置依赖安装
在开始高斯牛顿法的实现之前,确保已经安装了以下Python库:
- NumPy
- SciPy
- Matplotlib
你可以使用pip进行安装:
```bash
pip install numpy
一、高斯牛顿法发展历程1、从上倒下为高斯牛顿法的前世今生已经未来的演化:最速下降法(一阶梯度法) 牛顿法(二阶梯度法)高斯牛顿法 列文伯格法 马夸尔特法二、问题的引出1、考虑如下优化目标函数: 其中,是维待优化变量,是一个将维变量映射成标量的非线性函数。2、我们的目标: 对变量进行优化,即寻找一组合适的使得优化目标函数最小。3、最直观的方法:关于的多元函数,我们只要利用一阶导数等于零这一公式求出达
高斯牛顿迭代法 2016-06-07 17:09
分类: 机器学习(7) 非线性拟合,高斯牛顿迭代法。1.原理 高斯—牛顿迭代法的基本思想是使用泰勒级数展开式去近似地代替非线性回归模型,然后通过多次迭代,多次修正回归系数,使回归系数不断逼近非线性回归模型的最佳回归系数,最后使原模型的残差平方和达到最小。 ①已知m个点: ②函数原型: 其中:(m&
对比梯度下降,牛顿法,高斯牛顿梯度下降 实质是使用了雅克比矩阵(一阶导数矩阵) 优点:简单, 缺点:1、取得的是极小值,所以只有在凸函数上才可能找到全局最小。 2、与初始值设定有关,若初始值选取不当,需要迭代很多次 3、与步长有关,步长设置不当可能会形成震荡 4、收敛较慢牛顿法 实质是在梯度下降的基础上进一步考虑了二阶项,即Hessian矩阵(二阶导数矩阵)。 通俗的说,牛顿法迭代优化时既利用了梯
转载
2023-11-14 13:18:21
333阅读
Gauss-Newton算法是解决非线性最优问题的常见算法之一,最近研读开源项目代码,又碰到了,索性深入看下。本次讲解内容如下: 基本数学名词识记牛顿法推导、算法步骤、计算实例高斯牛顿法推导(如何从牛顿法派生)、算法步骤、编程实例高斯牛顿法优劣总结 一、基本概念定义1.非线性方程定义及最优化方法简述 指因变量与自变量之间的关系不是线性的关系,
转载
2023-10-07 13:31:25
753阅读
高斯牛顿法是一种常用于非线性最小二乘问题的优化算法,尤其在数据拟合和曲线拟合中广泛应用。下面我将详细介绍如何在 Python 中使用高斯牛顿法进行曲线拟合。
### 协议背景
在数据分析和模型构建中,我们经常需要拟合实际数据与数学模型之间的差异。高斯牛顿法通过迭代优化,使得模型预测与观测数据之间的误差最小化。实际应用中可视化拟合结果至关重要,因此我们会将数据结构化,并考虑其实施背景。
- *
一.迭代法解方程 ( 组 ) 的根 本篇一、二部分转自“星博”: 首先,迭代法解方程的实质是按照下列步骤构造一个序列x0,x1,…,xn,来逐步逼近方程f(x)=0的解:1)选取适当的初值x0;2)确定迭代格式,即建立迭代关系,需要将方程f(x)=0改写为x=φ(x)的等价形式;3) 构造序列x0,x1,……,xn,即先求得x1=φ(x0),再求x2=φ
线性最小二乘问题,我们可以通过理论推导可以得到其解析解,但是对于非线性最小二乘问题,则需要依赖迭代优化的方法,。 梯度下降主要是从一阶目标函数的一阶导推导而来的,形象点说,就是每次朝着当前梯度最大的方向收敛;二牛顿法是二阶收敛,每次考虑收敛方向的时候,还会考虑下一次的收敛的方向是否是最大(也就是梯度的梯度)。可以参考下图: 红线为牛顿法,绿线为梯度下降。高斯-牛顿和LM法则主要
转载
2024-02-04 11:01:14
80阅读
计算步骤如下:
下面使用书中的练习y=exp(a*x^2+b*x+c)+w这个模型验证一下,其中w为噪声,a、b、c为待解算系数。
代码如下:
1 clear all;
2 close all;
3 clc;
4
5 a=1;b=2;c=1; %待求解的系数
6
7 x=(0:0.01:1)';
8 w=rand(length(x),1)*2-1;
转载
2020-09-10 14:42:00
1069阅读
2评论
四参数正弦函数高斯牛顿法拟合 前言: 前些天写了计算方法与实现的论文,为了完成论文中模型的搭建,特意去学习了正弦函数的参数拟合方法。在这里记录一下。方法简介: 有待拟合正弦函数: 对于该函数f(x),由于其四个未知参数分布复杂,是一个求非线性方程组解的最小平方和的问题,因此它难以直接使用最小二乘法来进行拟合。经典的高斯牛顿法拟合四参数正弦函数具体方法如下: 对于正弦函
转载
2024-10-23 18:47:26
66阅读
一面项目相关1、简历中的项目相关问题,项目是三维重建相关的,深度学习的深度估计2、具体细节上,网络结构、loss设计、数据、训练泛化效果3、非公共区域如何处理、精度如何保证基础:1、非线性优化概念:规划问题的目标函数及约束函数中至少有一个是非线性函数,则称这种规划为非线性规划。迭代法:LM/高斯牛顿法/最速下降法/D_G法优缺点对比:高斯牛顿法适用于迭代的开始阶段,牛顿法适用于最优值附近,LM相当
牛顿法和拟牛顿法 牛顿法和拟牛顿法是求解无约束最优化问题的常用方法,有收敛速度快的优点。牛顿法是迭代算法,每一步需要求解目标函数的海赛矩阵的逆矩阵,计算比较复杂。拟牛顿法通过正定矩阵近似海赛矩阵的逆矩阵或海赛矩阵,简化了计算过程。一、背景Taylor展式若f(x)二阶导连续,将f(x)在xk处Taylor展开:上述迭代公式,即牛顿法。该方法可以直接推广到多维:用方向导数代替一阶导,用H
# 使用 Python 实现牛顿法
牛顿法(Newton's Method)是一种在数学和数值分析中广泛使用的求方程根的迭代方法。作为一名新入行的开发者,掌握这一方法非常重要。本篇文章将指导你如何用 Python 实现牛顿法。我们将逐步阐述其流程、所需代码及解释。
## 牛顿法的基本原理
牛顿法的基本思想是通过函数的切线来逐步逼近函数的根。假设我们有一个函数 \( f(x) \),我们想要找
目录一.前言二.拟牛顿法的基本思想三.秩1矫正Hk公式四.算法步骤 五.代码实现1.秩1矫正算法2.目标函数3.目标函数梯度4.主函数六.仿真结果与分析一.前言 上上上篇文章介绍了牛顿法和修正牛顿法。想看的话可以往后翻。牛顿法有二阶的收敛速度,但Hess阵必须要正定,因为只有正定才能保证它的下降方向是正确的。虽然修正牛顿法克服了这个缺点,但是它的修正参数uk的选取
转载
2024-01-16 16:25:58
154阅读
代码功能包括函数图像展示,初始值选取收敛区间判断,迭代结果输出,迭代过程图像输出。 因讲解过于冗长,先将完整代码直接放在这里,只是想抄个模板方便修改的可以直接拿去用啦,有不了解的地方可以再翻下去看。"""
牛顿法编程计算sin(x)-x
转载
2023-06-19 15:18:37
287阅读
文章目录拟牛顿法待优化实例scipy工具包实现BFGS自编Python实现BFGS 拟牛顿法在梯度类算法原理:最速下降法、牛顿法和拟牛顿法中,介绍了梯度类算法求解优化问题的设计思路,并以最速下降法、牛顿法和拟牛顿法为例,描述了具体的算法迭代过程。其中,拟牛顿法(Broyden–Fletcher–Goldfarb–Shanno,BFGS)在实际优化场景中被广泛使用,因此本文将自主编写Python代
转载
2023-10-20 11:36:07
100阅读
目录1 原理2 弦截法的求解过程3 弦截法的几何解释3.1 定端点弦截法3.2 变端点弦截法4 案例&Python实现1 原理弦截法是在牛顿法的基础上进行了改良。牛顿法迭代公式如下:从迭代公式可以看出,牛顿迭代法的一个较强的要求是:存在且不为0。弦截法的思想就是用弦斜率去近似代替。弦截法的迭代公式有两种: ① 定端点迭代法,用点和点连线的斜率 近似代替 。② 变端点迭代
使用牛顿迭代法求方程 在x附近的一个实根。 赋值X,即迭代初值;用初值x代入方程中计算此时的f(x)=(a * x * x * x + b * x * x + c * x + d)和f’(x)=(3 * a * x * x + 2 * b * x + c)计算增量f(x)/f’(x);计算下一个x: x-f(x)/f’(x); 把新产生的x替
转载
2023-06-09 22:52:00
157阅读
牛顿法,拟牛顿法,DFP算法,Python
目录:计算例题汇总最速下降法牛顿法拟牛顿法DFP算法最速下降法(Steepest Descent Method)和梯度下降法(Gradient Descent Method)是不同的两个方法,最速下降法要找到泰勒一阶展开式令目标函数下降最多的方向,最速下降法的收到范数的限制。当取欧式范数,就变成了梯
转载
2023-12-29 23:00:58
150阅读
一、牛顿法概述 除了前面说的梯度下降法,牛顿法也是机器学习中用的比较多的一种优化算法。牛顿法的基本思想是利用迭代点处的一阶导数(梯度)和二阶导数(Hessen矩阵)对目标函数进行二次函数近似,然后把二次模型的极小点作为新的迭代点,并不断重复这一过程,直至求得满足精度的近似极小值。牛顿法的速度相当快,而且能高度逼近最优值。牛顿法分为基本的牛顿法和全局牛顿法。二、基本牛顿法1
转载
2023-07-28 22:01:15
96阅读