Python3 基本数据类型 1、标准数据类型。 2、Number(数字) Python3 支持 int、float、bool、complex(复数)。在Python 3里,只有一种整数类型 int,表示为长整型。通常可以使用内置的type()函数来查询变量所指的对象类型,或使用isinstance 来判断。 一个变量可以通过赋值指向不同类型的对象。 数值的除法(/)总是返回一
转载
2023-08-05 18:58:29
69阅读
# 使用Numpy生成复数进行FFT
在信号处理中,快速傅里叶变换(FFT)是一种常用的算法,用于将信号从时域转换到频域。在Python中,我们通常使用Numpy库来进行FFT计算。虽然Numpy默认使用实数进行FFT计算,但是我们也可以使用复数进行FFT计算。本文将介绍如何使用Numpy生成复数进行FFT,并给出代码示例。
## FFT及其应用
傅里叶变换是一种将信号从时域转换到频域的数学
原创
2024-03-19 05:21:57
507阅读
1. 简介NumPy(Numerical Python)是一个开源的 Python 科学计算扩展库,主要用来处理任意维度数组与矩阵,通常对于相同的计算任务,使用 NumPy 要比直接使用 Python 基本数据结构要简单、高效的多。安装使用 pip install numpy 命令即可。2. 使用2.1 ndarrayndarray 即 n 维数数组类型,它是一个相同数据类型的集合,以 0
转载
2023-08-22 09:39:14
578阅读
先上代码:import numpy as np
import matplotlib.pyplot as plt
fs=10
ts=1/fs
t=np.arange(-5,5,ts)#生成时间序列,采样间隔0.1s
k=np.arange(t.size)#DFT的自变量
N=t.size#DFT的点数量
x=np.zeros_like(t)#生成一个与t相同结构,内容为0的np.arr
转载
2023-08-18 16:08:51
336阅读
图像(MxN)的二维离散傅立叶变换可以将图像由空间域变换到频域中去,空间域中用x,y来表示空间坐标,频域由u,v来表示频率,二维离散傅立叶变换的公式如下:在python中,numpy库的fft模块有实现好了的二维离散傅立叶变换函数,函数是fft2,输入一张灰度图,输出经过二维离散傅立叶变换后的结果,但是具体实现并不是直接用上述公式,而是用快速傅立叶变换。结果需要通过使用abs求绝对值才可以进行可视
转载
2023-07-17 21:17:17
150阅读
一:FFT变换fft变换其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 和傅立叶变换算法对应的是反傅立叶变换算
转载
2023-08-20 23:29:45
888阅读
1、流程大体流程如下,无论图像、声音、ADC数据都是如下流程: (1)将原信号进行FFT; (2)将进行FFT得到的数据去掉需要滤波的频率; (3)进行FFT逆变换得到信号数据;2、算法仿真2.1 生成数据:#采样点选择1400个,因为设置的信号频率分量最高为600Hz,根据采样定理知采样频率要大于信号频率2倍,所以这里设置采样频率为1400Hz(即一秒内有1400个采样点)
x=np.linsp
转载
2023-06-16 10:05:30
193阅读
刚刚开始使用numpy软件包并以简单的任务启动它来计算输入信号的FFT.这是代码:import numpy as np
import matplotlib.pyplot as plt
#Some constants
L = 128
p = 2
X = 20
x = np.arange(-X/2,X/2,X/L)
fft_x = np.linspace(0,128,128, True)
fwhl =
转载
2023-08-04 17:26:37
222阅读
1. 快速傅里叶变换(FFT) 原始二维傅里叶变换公式:np工具箱中有fft2函数可以对图像做二维快速傅里叶变换(不断分解成更小的、更容易的小蝶形变换替换大变换),但是要让输出的频谱图更有视觉效果,需要把四个角的中心点移动到矩阵中心,并做对数变换代码:import numpy as np
import cv2
import matplotlib.pyplot as plt
转载
2023-08-26 12:21:22
153阅读
对于通信和信号领域的同学来说,傅里叶变换、信号采样定理一定不陌生。本文主要对傅里叶变换中涉及的时频关系对应进行说明,并仿真了FFT。主要分为三个部分:1.时域信号仿真由于计算机只能计算离散的数值,所以即使我们在仿真时域信号的时候,也是离散时域下的信号。可以理解为对时域采样过后的信号。采样频率为fs,采样间隔即时域间隔即时域分辨率为dt=1/fs。故t不是连续的,它是有最小间隔的,是dt。产生时域t
转载
2024-01-16 16:54:29
182阅读
刚刚开始使用numpy软件包并以简单的任务启动它来计算输入信号的FFT.这是代码:import numpy as np
import matplotlib.pyplot as plt
#Some constants
L = 128
p = 2
X = 20
x = np.arange(-X/2,X/2,X/L)
fft_x = np.linspace(0,128,128, True)
fwhl =
转载
2023-10-29 21:20:21
57阅读
在做超分辨重建任务时,需要对重建图像做出评价,主要是人眼感官上的评价。这就需要我们从空域和频域两个方面对图像进行评价。下面给给出python实现的结果,并给出相应的代码。图像(MxN)的二维离散傅立叶变换可以将图像由空间域变换到频域中去,空间域中用x,y来表示空间坐标,频域由u,v来表示频率,二维离散傅立叶变换的公式如下: &nb
转载
2023-08-18 16:08:43
522阅读
import matplotlib.pyplot as plt
import numpy as np
import cv2
%matplotlib inline首先读入这次需要使用的图像img = cv2.imread('apple.jpg',0) #直接读为灰度图像
plt.imshow(img,cmap="gray")
plt.axis("off")
plt.show()使用numpy带的ff
转载
2023-10-05 10:05:58
95阅读
fft()函数简单到发指,一般使用时就两个参数fft(nparray,n),n还可以缺省。上代码:import numpy as np
from scipy.fftpack import fft,ifft
fft_y=fft(y)
print(fft_y)执行结果:[180444.84 -0.j -1764.15187386-6325.24578909j
转载
2023-08-07 21:27:22
739阅读
1、Caffe的卷积操作时间主要在矩阵乘法,假设一个m*n卷积核,且输入通道数为1,输出特征图大小为h*w,则乘法个数m*n*h*w,这里的优化仅限于对矩阵的乘法优化,因此,只要选择适合的矩阵计算库就可以了。2、若使用FFT来计算图像卷积。其主要步骤如下。假设输入图像的大小为len=h*w,卷积核大小k_len=m*n;通常len>>k_len;对输入图像A做FFT,其算法的时间复杂度
转载
2023-07-20 23:07:16
67阅读
文章目录FFT运算应用时的要点FFT运算前数据长度周期情况采样频率数据补零FFT运算中FFT运算后幅值频率相位基于Python的通用化FFT计算函数附录:术语参考相干采样和非相干采样分贝dB的定义 本文记录了如何使用scipy提供的FFT函数,实现快速傅里叶变换的实际例程。关于FFT的基本理论,在正文中不会特别介绍,可以根据读者要求,针对特别的知识点在附录中加以说明,本文重点在于介绍如何解决实际
转载
2023-07-11 14:57:55
393阅读
目录前言快速傅里叶变换之numpyopenCV中的傅里叶变换np.zeros数组cv2.dft()和cv2.idft()DFT的性能优化cv2.getOptimalDFTSize()覆盖法填充0函数cv2.copyMakeBorder填充0时间对比 前言在学习本篇博客之前需要参考 快速傅里叶变换之numpypython的numpy中的fft()函数可以进行快速傅里叶变换,import cv2
转载
2023-07-20 23:08:04
148阅读
一 FFT的使用方法在matlab中常用的FFT函数有以下几种方式:(详细的使用说明可以百度matlab官网中FFT函数的介绍) X=FFT(x); X=FFT(x,N);x=IFFT(X);x=IFFT(X,N) 二 下面直接使用案例对FFT函数进行介绍案例一:x=1*sin(2*pi*15*t)+4*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。
转载
2023-12-16 20:11:35
176阅读
学习目标使用OpenCV计算傅里叶变换使用Numpy中的傅里叶变换(FFT)傅里叶变换的应用学习函数如下:cv2.dft(),cv2.idft()
理论傅里叶变换用来分析不同滤波器的频率特性。对于图像而言,2D离散傅里叶变换(DFT)用于寻找频率域。傅里叶变换的快速算法,FFT,常用于计算DFT。对于正弦信号,,我们称f为频率信号,如果频率域确定,那么我们可以看到f的具体形状(spike)。如果一
转载
2024-06-16 20:53:17
147阅读
1.Matlab里的IFFT/FFT函数系数的问题Matlab里的ifft函数会在做完正常的变换后除以ifft变换的点数,而fft函数中没有系数。Matlab里的IFFT变换及FFT变换:因此在Matlab上,利用fft函数做频谱分析,应注意以下几点:(1)应对FFT的结果除以FFT点数,才能得到各频点的真实幅值。(2)FFT的频率分辨力等于采样频率除以FFT点数,即:(3)对实序列进行FFT,结