ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里。这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC。ROC曲线需要提前说明的是,我们这里只讨论二值分类器。对于分类器,或者说分类算法,评价指标主要有precision,rec
转载
2023-11-23 18:29:31
240阅读
问题在做二分类问题时候,有正样本和负样本。构建的算法,针对每个样本会输出一个分数值。假设该分数大小为[0, 1]区间内的值。有时候单纯地以分数0.5位阈值划分样本为预测为1或者预测为0,效果有时候并不好,此时如何确定很好的阈值分数呢?答案是可以利用roc曲线来确定比较好的划分阈值。ROC曲线介绍二分类过程,设定阈值,大于该分数为1,小于该分数为0,统计计算TP, FN, FP,TN等数据计算FPR
转载
2024-01-22 21:01:15
101阅读
分类器性能指标之ROC曲线、AUC值一 roc曲线1、roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例;(1-Specificity)纵轴:真正类率(true p
转载
2024-07-10 14:13:02
132阅读
对matrix或array型数据做2分类时,如何画出其roc曲线?1)首先看一下roc_curve的定义: ROC曲线的全称是“受试者工作特性”曲线(Receiver Operating Characteristic),源于二战中用于敌机检测的雷达信号分析技术。是反映敏感性和特异性的综合指标。它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏感性为纵坐标、(1-特异性)
转载
2024-04-26 20:49:42
157阅读
一个故事江湖传闻,ROC曲线最早被用于检测敌军的雷达信号,后来不知怎么的,被应用到心理学,影像学和医学等等。举个例子,一位医生有两组受试者,一组为正常对照组,一组为病例组,他们的疾病状态分别由目前的金标准所诊断(比如说通过病理活检或临床诊断等等)。同时,这位医生对血液中的某个指标非常感兴趣,想研究这个指标是否可以用于疾病的早期诊断,并且想要评估它的敏感度(Sensitivity)和特异度(Spec
转载
2023-12-27 11:01:26
238阅读
文章目录引言ROC的引入混淆矩阵ROC曲线的解释EERAUC 引言 本文旨在介绍ROC曲线及其前置概念如混淆矩阵、FPR、TPR等,还有其引申概念EER、AUC等等。ROC的引入 ROC曲线是一张用于评价二分类模型的曲线图,典型如下图所示: 理论上来说,该曲线越靠近坐标系的左上角说明该二分类器的表现越好,一个理想的二分类的ROC曲线应如下图所示:混淆矩阵 为了了解ROC曲线横纵轴所代表的意义及曲
转载
2024-04-22 22:24:52
91阅读
在准备机器学习导论课程考试的过程中,发现自己根据西瓜书上的讲解总是也理解不上去ROC曲线的含义。于是在网络上寻求答案,发现一篇讲解得不错的博客【1】,说得比西瓜书好很多,通俗易懂。这里说一下自己的感想和理解对于已经有数据标签的训练样本,可以得到它们的评分: 其中class一栏表示真实值,p为正例,n为反例,这20个样本中有10个正例10个反例;score一栏则是分类器给出的分类评分。一般
转载
2024-10-06 13:45:51
45阅读
电影评论分类(二分类问题/IMDB 数据集)-python深度学习_原例IMDB 数据集包含来自互联网电影数据库(IMDB)的 50 000 条严重两极分化的评论。数据集被分为用于训练的 25 000 条评论与用于测试的 25 000 条评论,训练集和测试集都包含 50% 的正面评论和 50% 的负面评论。 MNIST 数据集(手写阿拉伯数字图像数据)一样,IMDB 数据集也内置于 Keras 库
我们模型应该从对角线上看我们举一个例子,帮助理解混淆矩阵,在真实标签中,如果我们生病了,我们就是1,如果我们没生病就是0TP:我们真的病了,然而模型也预测出来我们生病了(俩都是真病了)FN:我们真的病了,然后模型却没有预测出来我们生病了(真病,模没病)FP:我们没有生病,然后模型却预测出来我们生病了(真没病,模有病)TN:我们没有生病,然后模型也没有预测出来我们生病(俩都没病)1.混淆矩阵的行代表
转载
2023-12-20 09:14:31
58阅读
2018年学习的遗留文章。基本说明由于近来在研究关于eye fixation以及saliency detection,之前在object detection中使用较多的是mAP, 而这里使用的更多的是ROC(Reciever OPeration Characteristic)曲线和AUC评价分类器的性能。该分类器实际上是可以解决多类分类问题的(后续进行说明), 然而其在解决二分类问题时还是存在一定
转载
2024-04-29 11:19:39
46阅读
二分类问题可能是应用最广泛的机器学习问题,它指的是所有数据的标签就只有两种,正面或者负面。在这个例子中,我们学习根据电影评论的文字内容将其划分为正面或者负面。数据集介绍:本节使用IMDB数据集,它包含来自互联网电影数据库(IMDB)的50000条严重两极分化 的评论。数据集被分为用于训练的25000条评论和用于测试的25000条评论,训练集和测试集都包含50%的正面评论和50%的负面评论。为什么要
转载
2023-08-17 17:05:41
0阅读
电影二分类问题通常需要对原始数据进行大量预处理,以便将其转换为张量输入到神经网络中。单词序 列可以编码为二进制向量,但也有其他编码方式。带有 relu 激活的 Dense 层堆叠,可以解决很多种问题(包括情感分类),你可能会经 常用到这种模型。对于二分类问题(两个输出类别),网络的最后一层应该是只有一个单元并使用 sigmoid 激活的 Dense 层,网络输出应该是 0~1 范围内的标量,表示概
转载
2024-04-18 07:07:20
49阅读
文章目录ROC曲线ROC曲线概念ROC曲线坐标系ROC曲线重要概念案例:画ROC曲线AUC值为什么使用Roc和Auc评价分类器 二分类模型预测的结果是否足够好,ROC和AUC是重要指标。 ROC曲线ROC曲线概念ROC曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。ROC曲线坐标系横轴:负正类率(fals
转载
2024-06-14 17:08:57
127阅读
前言上文中介绍了错误率、精度、准确率、召回率、F1值,除了上述指标,在分类问题的竞赛中还有以下更加常用的指标。【数学建模】分类问题的几种常见指标(一)——准确率、召回率、F1值1 ROC曲线ROC 曲线(接受者操作特征曲线)是常用于度量分类中的非均衡性的工具。ROC 曲线用于绘制采用不同分类阈值时的 TP 率与 FP 率。降低分类阈值会导致更多样本被归为正类别,从而增加假正例和真正例的个数。下图中
转载
2024-04-19 13:59:38
78阅读
文章目录一. 书中默认网络模型 - 更换Optimizer后效果有改善1. 网络模型2. Compile模型2.1 RMSprop2.2 SGD2.3 Adagrad2.4 Adam二. 另外一个模型1. 网络模型2. Compile模型2.1 RMSprop2.2 SGD2.3 Adagrad2.4 Adam三. 总结 本文旨在通过一个简单的二分类问题, 利用不同的模型, 参数来理解背后的含义
转载
2023-10-11 19:29:18
254阅读
0 环境Python版本:3.6.8系统版本:macOS MojavePython Jupyter Notebook1 引言七月了,大家最近一定被一项新的政策给折磨的焦头烂额,那就是垃圾分类。《上海市生活垃圾管理条例》已经正式实施了,相信还是有很多的小伙伴和我一样,还没有完全搞清楚哪些应该扔在哪个类别里。感觉每天都在学习一遍垃圾分类,真令人头大。听说一杯没有喝完的珍珠奶茶应该这么扔首先,没喝完的奶
加权(代价敏感)和阈值都是代价敏感学习的有效形式。简单地说,你可以把这两件事想成:加权本质上,有一种说法是,错误分类稀有类的“代价”比错误分类普通类的代价更大。这是在算法级应用于支持向量机、人工神经网络和随机森林等算法。这里的局限性在于算法是否能够处理权重。此外,这方面的许多应用正试图解决更严重的错误分类(例如,将胰腺癌患者归类为非癌症患者)的想法。在这种情况下,即使在不平衡的设置中,也要知道为什
转载
2023-10-26 15:54:18
79阅读
本文示例的模块版本: python 3.6 tensorflow 1.15(会有很多警告,但不妨碍运行。另2.0很坑,API都变了T-T)关于神经网络结构的软件设计和分类曲线的绘制,构建的具体步骤如下:步骤1. 建立数据源(样本库)——使用随机初始化的方式。由于需要进行逻辑分类,需要建立2个数据类,并合并在一起。如下:num_points=1000 # 样本数目
vectors_set=[]
x
转载
2024-01-27 11:08:04
72阅读
逻辑回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。逻辑回归从本质来说属于二分类问题。二分类问题是指预测的y值只有两个取值(0或1),二分类问题可以扩展到多分类问题。例如:我们要做一个垃圾邮件过滤系统,x是邮件的特征,预测的y值就是邮件的类别,是垃圾邮件还是正常邮件。对于类别我们通常称为正类(positive class)和负类(neg
转载
2023-10-12 10:26:30
99阅读
基础监督学习经典模型监督学习任务的基本架构和流程: 1.准备训练数据; 2.抽取所需特征,形成用于训练特征向量(Feature Vectors); 3.训练预测模型(Predictive Model); 4.抽取测试数据特征,得到用于测试的特征向量; 5.使用预测模型对待测试特征向量进行预测并得到结果(Label/Target)。分类学习 1.二分类(Binary Classifica
转载
2023-11-03 05:55:58
147阅读