1 引言在这一篇文章中,将讨论一种被广泛使用的分类算法—决策树(decision tree)。相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置,因此在实际应用中,对于探测式的知识发现,决策树更加适用。2 决策树介绍决策树是一种机器学习的方法,决策树的生成算法有ID3, C4.5 和 C5.0 等。决策树是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结
转载
2023-10-12 07:47:43
214阅读
决策树分类一、决策树分类简介: 决策树方法是利用信息论中的信息增益寻找数据库中具有最大信息量的属性字段,建立决策树的一个结点,再根据该属性字段的不同取值建立树的分支,再在每个分支子集中重复建立树的下层结点和分支的一个过程,构造决策树的具体过程为:首先寻找初始分裂,整个训练集作为产生决策树的集合,训练集每个
转载
2024-04-28 15:27:11
92阅读
机器学习之决策树原理及代码实现写在前面决策树1.决策树的定义2.决策树我的理解特征选择信息增益信息增益比算法实现ID3算法C4.5算法CART决策树三种算法的对比 写在前面这是我开始入坑的第一篇博客,全部内容基于我的理解和参考博客,参考书籍为李航的《统计学习方法》。如有不对的地方欢迎评论指出,谢谢大家。决策树1.决策树的定义《统计学习方法》中提出,决策树是一种基本的分类与回归方法。决策树模型呈现
转载
2024-04-09 14:16:58
187阅读
原标题:Python写算法:二元决策树数据挖掘入门与实战 公众号: datadw二元决策树就是基于属性做一系列的二元(是/否)决策。每次决策对应于从两种可能性中选择一个。每次决策后,要么引出另外一个决策,要么生成最终的结果。一个实际训练决策树的例子有助于加强对这个概念的理解。了解了训练后的决策树是什么样的,就学会了决策树的训练过程。代码清单6-1为使用Scikitlearn的DecisionTre
转载
2024-05-29 21:44:36
30阅读
目录1、分类决策树案例(1)导入相关模块与数据(2)数据清洗与划分训练集、测试集(3)构建决策树(4)考察成本复杂性参数与叶节点总不纯度的关系(5)通过10折交叉验证选择最优的超参数ccp_alpha值,并拟合模型(6)计算每个变量重要性并进行可视化(7)使用测试集进行预测,并计算混淆矩阵(8)计算预测准确率与灵敏度、kappa指标(9)以0.1作为临界值重新进行预测,计算混淆矩阵与预测准确率、灵
决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。决策树尤其在以数模型为核心的各种集成算法中表现突出。开放平台:Jupyter lab根据菜菜的sklearn课堂实效生成一棵决策树。三行代码解决问题。from sklearn import tree #导入需要的模块
clf =
转载
2023-07-25 14:16:12
178阅读
决策树一 、概述二、决策树的准备工作2 特征选择2.1香农熵2.2信息增益2.3数据集的最佳切分方式2.4按照给定列切分数据集三、递归构建决策树四、决策树的存储五、决策树分类效果 一 、概述决策树: 是有监督学习的一种算法,并且是一种基本的分类与回归的方法。 决策树分为分类树和回归树,本章主要是分类树。二、决策树的准备工作决策树的构建分为三个过程:特征选择、决策树的生成、决策树的剪枝1 原理:
转载
2023-12-16 20:52:16
81阅读
一.什么是分类算法分类(Categorization or Classification)就是按照某种标准给对象贴标签(label),再根据标签来区分归类。分类是事先定义好类别 ,类别数不变 。分类器需要由人工标注的分类训练语料训练得到,属于有指导学习范畴。二.决策树算法 1.概述决策树(decision tree)——是一种被广泛使用的分类算法。相比贝叶斯算法,决策树的优势在于构造过程
转载
2023-11-03 12:38:45
63阅读
决策树 决策树是一种树型结构,其中每个内部节结点表示在一个属性上的测试,每一个分支代表一个测试输出,每个叶结点代表一种类别。决策树学习是以实例为基础的归纳学习决策树学习采用的是自顶向下的递归方法,其基本思想是以信息熵为度量构造一棵熵值下降最快的树。到叶子节点的处的熵值为零,此时每个叶结点中的实例都属于同一类。最近在学习决策树的分类原理(DecisionTreeClassifier),决策树的划分依
转载
2023-10-20 20:41:55
87阅读
大家有没有听说过“三行代码行天下”这句话真的有这么强吗?没错,你没有听错python在数据处理建模这方面确实段位很高那么,python中的最重要的装备之一就是“sklearn”下面我们就来看看sklearn是如何来实现决策树中的分类树的本文目录: 1
概述 1.1 sklearn
中的决策树 2 DecisionTreeClassi
转载
2024-03-05 20:09:57
100阅读
# Python决策树分类实现指南
作为一名经验丰富的开发者,我将教会你如何使用Python实现决策树分类。在本文中,我将向你介绍整个流程,并提供每个步骤所需的代码和注释。
## 整体流程
首先,我们先来了解整个实现决策树分类的流程,如下表所示:
| 步骤 | 描述 |
| --
原创
2023-09-04 15:28:31
101阅读
决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。
转载
2023-05-29 23:27:29
355阅读
目录现实问题:“求职简历太多,给不给面试机会?”决策树决策树求解决策树算法优缺点知识巩固Python实战:决策树判断员工是否适合相关工作拓展学习现实问题:“求职简历太多,给不给面试机会?”简历上有什么:个人技能、工作经验、学校学历、期望薪资等任务:根据求职者的相应技能、工作经验、学历背景和薪资要求判断能否安排该求职者面试。决策树一种基于样本分布概率,以树形结构的方式,实现多层判断从而确定目标所属类
转载
2023-08-29 19:07:15
297阅读
本片文章的整体框架如下所示:1. 决策树是什么?决策树是一种基本的分类和回归的方法,是基于树结构来进行决策。这种决策方式跟我们人类进行决策时有点类似,所以我们举一个相亲的例子,比如女方在相亲时会对男性程序员的年龄进行判断,假如年龄大于30,那么就不见了,因为30之后可能头发都没了,那么假如是小于等于30,则继续判断这个男性程序员的长相。如下图所示,某个女方在决定见不见男性程序员时,可能会有如下的决
转载
2023-10-31 23:35:26
153阅读
目录1 决策树模型简介2 Gini系数(CART决策树)3 信息熵、信息增益4 决策树模型代码实现4.1 分类决策树模型(DecisionTreeClassifier)4.2 回归决策树模型(DecisionTreeRegressor)5 案例:员工离职预测模型5.1 模型搭建5.1.1 数据读取与预处理5.1.2 提
决策树(DecisionTree)又称为判定树,是运用于分类的一种树结构。当中的每一个内部结点(internalnode)代表对某个属性的一次測试,每条边代表一个測试结果,叶结点(leaf)代表某个类(class)或者类的分布(classdistribution),最上面的结点是根结点。决策树分为分...
转载
2014-08-23 15:54:00
447阅读
2评论
决策树(DecisionTree)又称为判定树,是运用于分类的一种树结构。当中的每一个内部结点(internalnode)代表对某个属性的一次測试,每条边代表一个測试结果,叶结点(leaf)代表某个类(class)或者类的分布(classdistribution),最上面的结点是根结点。决策树分为分...
转载
2014-11-12 11:15:00
136阅读
转载
2017-09-04 15:45:00
187阅读
决策树算法 如何能够基于既有的数据来进行分类和回归?决策树是解决这类问题的机器学习模型。 解决思路是:通过样本特征的三个数字特征:1)满足特征值的样本数量;2)1)样本的分类各自数量有多该少;3)总的样本数量,来作为input参数,通过构建/选择的模型就计算出来该特征的指标,对于ID3而是信息增益,
转载
2019-12-26 20:38:00
383阅读
2评论
实习了一段时间,接触了一些数据挖掘、机器学习的算法,先记录下来方便以后的复习回顾: 一:决策树概念 决策树可以看做一个树状预测模型,它是由节点和有向边组成的层次结构。树中包含3中节点:根节点、内部节点、叶子节点。决策树只有一个根节点,是全体训练数据的集合。树中每个内部节点都是一个分裂问题:指定了对实例的某个属性的测试,它将到达该节点的样本按照某个特定的属性进行分割,并且该节点的每一个后继
转载
2024-09-09 18:39:08
51阅读