# 大数据技能大赛与Spark 在当今数据驱动的时代,大数据技能日益成为职场中的一项重要竞争力。许多教育机构和企业举办了各种大数据技能大赛,旨在培养更多的专业人才。在这些比赛中,Apache Spark作为一种流行的大数据处理框架,得到了广泛的应用。本文将简要介绍Spark及其在数据分析中的应用,并提供一个简单的代码示例。 ## 什么是Apache Spark? Apache Spark是一
原创 10月前
83阅读
在参加“大数据分析技能大赛”的准备过程中,我们遇到了一个关于 Python 的试题,在数组排列和组合相关的计算中出现了一些意想不到的问题。下面将详细描述整个解决问题的过程,包括背景情况、错误现象分析、根因探讨、解决方案、验证测试和预防优化措施。 ### 问题背景 在大数据分析的技能大赛中,题目要求对一个给定数组进行排列和组合操作,以生成特定结果。在最初的实现中,我们在测试时发现程序并未如预期工
原创 6月前
139阅读
大家好呀,本次全国大学生数据分析大赛开赛后我一直在做,然后昨天是已经完成了A题的成品,至此,A、B两题全部求解结束,都有了完整成品,大家可以看本文章最下面的卡片。里面还有AB题的讲解视频哈,然后本文章是A题的一个图文版讲解,保姆级别的教程哈,我会手把手教大家怎么去做这道题。先定下主基调,没想到做了快两天才做完A,这道题比我预想的要麻烦很多,模型不难,本质上就是分类汇总+绘图+预测,难点在于这道题数
这个比赛偶然在saike上看到的,不是很难比较水,由于是单人参赛,秉持着巩固锻炼一下自己的数据挖掘和机器学习水平的想法就报名了。由于赛题确实没什么含金量,7天的比赛3天我就把论文和代码写完了。不过也得益于我以前存过情感分析的深度学习bert模型代码,所以最后的训练效果非常好。最后离一等奖差了五名,有点遗憾但是也捞了个二等奖。给大家参考一下思路和代码吧题目选择——题目 B:餐饮服务评价情感倾向分析餐
AETA地震预测 AI 算法大赛——Helloworld队比赛方案(亚军)        首先很幸运拿到AETA地震预测AI数据分析大赛的亚军,非常感谢我的大佬队友(也是我的学弟)。我第一次参赛没有思路也没有经验,想先做一个可行性分析,做一个大而全的方案,导致的后果就是无从下手。队友直接给我上了一课,别想太多,先定一个简单的方案先试着,后期再做改进,不管三
竞逐数海,领航未来
原创 2021-07-27 13:56:58
422阅读
不要用xshell;可视化全部python+Echarts;分析和搭建是分开的,可以并行处理;每做一步都要赶快按提交按钮,不然会影响得分;网络爬虫优先选择八爪鱼和火车头;每个人有三次机会哈,一定要珍惜,本周末你们先练一组,下周一咱们碰头总结一下,一定要把题目copy下来;我梳理了两条线,搭建
原创 2023-11-29 11:36:30
63阅读
实验一;大数据可视化工具—Excel实验内容 1.练习excel数据读取及数据随机生成 2.读取相关实验数据,利用在单元格或编辑栏中直接输入带函数公式的方法求得个人成绩与平均成绩的差值 3.根据提供的成绩表数据,练习如何使用快捷键创建柱状图 4.练习如何使用功能区创建不同类型图表(展示创建过程,要求创建柱状图、散点图、饼图、折线图、雷达图,所有图的标题、x轴和y轴的标题,图例都要包含) 5.练习如
prefacePython在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。Python数据分析与挖掘技术概述所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的
前面学习了Python的基础语法,Numpy和Pandas,终于要使用Python来进行数据分析的实战练习了。本节以某药店2018年商品销售数据为例来练习利用Python进行数据分析的基本方法。数据分析基本步骤: 1、提出问题 2、理解数据 3、数据清洗 4、构建模型 5、数据可视化一、提出问题要分析解决业务数据问题,首先要与业务部门进行沟通。本节案例主要分析月消费次数、月消费金额、客单价、消费趋
Datawhale 河北高校数据挖掘比赛-Task1 赛题理解一、 赛题理解赛题:零基础入门数据挖掘 - 二手车交易价格预测1.1 学习目标理解赛题数据和目标,清楚评分体系。1.2 了解赛题- 赛题概况 - 数据概况 - 预测指标 - 分析赛题1.2.1 赛题概况比赛要求参赛选手根据给定的数据集,建立模型,二手汽车的交易价格。赛题以预测二手车的交易价格为任务,数据集报名后可见并可下载,该数据来自某
数字时代监控运维系统数据量暴增,指标、日志、代码堆栈、网络数据包等等时间序列数据从每天几百兆采集量膨胀到每天上百GB,上TB。由于故障总是偶发,而监控数据在故障发生回朔时才更有价值。如何利用这些低价值密度的海量数据呢?传统监控系统要么只是针对指标、日志等单一类型数据提供分析能力,要么只针对网络、基础设施、应用中间件提供监控能力。随着应用系统快速复杂化,、企业现有数据孤岛式的监控系统已经严重阻碍
Python大数据随着互联网和物联网的快速发展,数据已经成为了一个非常重要的资源。人们需要对这些数据进行采集、存储、处理和分析,从而获取有价值的信息和洞见。而这些数据往往是非常大的,需要使用一些特殊的技术和工具来处理。这就是大数据技术的应用场景。Python是一种非常适合用于大数据处理的编程语言。它具有简单易学、开发效率高、生态系统完善等优点,同时还有很多专门用于大数据处理的库和框架。在这篇文章
大数据开发需要学什么编程语言?随着大数据的持续升温,越来越多的人投身于大数据的浪潮之中,不少完全没基础的小伙伴,难免会有这样的疑问,从事大数据需要学习什么编程语言呢?其实这个问题没有固定的答案,像Python、R、Java和Scala都是很好的选择,大家可以根据自身的实际情况进行选择1、Python一般的数据科学家都会选择Python作为大数据语言的首选。一直以来,Python流行于学术界,在自然
转载 2023-08-10 21:44:55
71阅读
Python 中,我们可以找到原生的并行化运算指令。本文可以教你仅使用 3 行代码,大大加快数据预处理的速度。Python 是机器学习领域内的首选编程语言,它易于使用,也有很多出色的库来帮助你更快处理数据。但当我们面临大量数据时,一些问题就会显现……目前,大数据(Big Data)这个术语通常用于表示包含数十万数据点的数据集。在这样的尺度上,工作进程中加入任何额外的计算都需要时刻注意保持效率。
转载 2024-06-04 07:44:10
40阅读
对于Pandas运行速度的提升方法,之前已经介绍过很多回了,里面经常提及Dask,很多朋友没接触过可能不太了解,今天就推荐一下这个神器。1、什么是Dask?Pandas和Numpy大家都不陌生了,代码运行后数据都加载到RAM中,如果数据集特别大,我们就会看到内存飙升。但有时要处理的数据并不适合RAM,这时候Dask来了。Dask是开源免费的。它是与其他社区项目(如Numpy,Pandas和Scik
随着大数据时代的到来,数据分析成为了一个日益重要的技能。Python作为一门广泛应用的编程语言,在数据分析领域表现尤为出色,其中Pandas库是Python数据分析中不可或缺的工具。本文将介绍如何使用Pandas库进行基本的数据分析操作。安装与配置PandasPandas基础知识数据导入与导出数据预处理数据筛选与排序数据聚合与分组结论 安装与配置Pandas在开始使用Pandas之前,首先需要安
转载 2023-08-21 20:59:37
126阅读
一、计算机运行基本原理及python基础在了解计算机运行基本原理之上,理解python程序运行基本原理。做好数据分析准备工作。安装好Anaconda做好相应变量配置,下载cmd工具Conemu,利用Anaconda工具安装配置好jupyternotebook。二、jupyternotebook上的代码示例打开conemu,输入命令 conda env list 查看所创建的虚拟环境,选择第二个虚拟
文章目录一、Pandas 概述二、Series 对象三、DataFrame 对象四、导入外部数据1. 导入 .xls 或 .xlsx 文件2. 导入 .csv 文件3. 导入 .txt 文本文件4. 导入 HTML 网页五、数据抽取六、数据的增加、修改和删除1. 增加数据2. 修改数据3. 删除数据七、数据清洗1. 查看与处理缺失值2. 重复值处理3. 异常值的检测与处理八、索引值的设置1. 索
python数据科学中非常流行,有大量可供开发人员使用的库和框架,这些库对数据分析和机器学习都特别有用,为处理大数据提供了无数的支持,使python成为大数据最受欢迎的语言。一、Python 环境搭建1.1 安装 Python安装Python最简单的方法是访问 Python 官方网站并下载相应的版本。Python 的官方网站(http://www.python.org/)提供了 Python
  • 1
  • 2
  • 3
  • 4
  • 5