我们使用华为云 ModelArts 轻松完成了滑动验证码缺口的识别。但是那种实现方案依赖于现有服务,是华为云提供的深度学习平台所搭建的识别模型,其实其内部是用的深度学习的某种目标检测算法实现的,如果利用平台的话,我们无需去申请 GPU、无需去了解其内部的基本原理究竟是怎么回事,它提供了一系列标注、训练、部署的流程。但用上述方法是有一定的弊端的,比如使用会一直收费,另外不好调优、不好更好地定制自己的
写的还算不错。最近在倒腾Matconvnet工具包,正好看见新版Matlab的神经网络工具了,一并学习了,两者很相似。这里是matlab2017a,昨天去学校网上看,貌似matlab2018也出来了哈哈,真是日新月异。关于Matlab,CUDA,VS编译器,以及GPU配置可以查看我的上一篇博文。1.前言最近需要用到卷积神经网络(CNN),在还没完全掌握cuda+caffe+TensorFlow+p
转载 2024-02-16 10:06:53
16阅读
Keras 模型构建概览Keras 模型构建主要包括5个步骤:。1.1 定义模型model = Sequential() model.add(Dense(2))定义模型是 Keras 构建神经网络的第一步,这里由Sequential类生成了一个实例,然后添加了一个Dense类型的层(layer),参数2表示该层神经元的数量。一般层的添加顺序即是各层连接的顺序,也是数据流经模型被处理的顺序。模型添加
转载 2024-09-18 20:42:18
38阅读
经典反向传播算法公式详细推导 卷积神经网络(CNN)反向传播算法公式详细推导网上有很多关于CNN的教程讲解,在这里我们抛开长篇大论,只针对代码来谈。本文用的是matlab编写的deeplearning toolbox,包括NN、CNN、DBN、SAE、CAE。在这里我们感谢作者编写了这样一个简单易懂,适用于新手学习的代码。由于本文直接针对代码,这就要求读者有一定的CNN基础,可以参考L
转载 2024-09-24 19:15:53
195阅读
CNN 是 network架构, 名 为 卷积神经网络。 它 专门用于 影像方面。通过CNN 让大家明白:        1、network架构设计有什么想法?        2、为什么设计network架构,可以让我们的network结果做的更好首先,我们以影像分类的例子(即我
转载 2024-03-19 13:52:22
51阅读
一、opencv的示例模型文件opencv4.0.0中暂未提供cpp代码,使用python代码改编,参考https://github.com/opencv/opencv/blob/master/samples/dnn/mask_rcnn.py,我们使用的模型为 mask_rcnn_inception_v2_coco_2018_01_28.pb,选择InceptionV2是因为其速度更快,其他更好效
这节课开始讲深度学习中重要的网络: 卷积神经网络(Convolutional Neural Network)CNN。 理解卷积操作在神经网络中的作用,理解CNN在做什么,以及CNN的可视化。 首先回顾一下及深度学习(CNN)中的卷积为什么要用CNN?局部检测 卷积核有大小之分,对应感受视野,而一个卷积核一般远远小于整张图片,所以卷积后的到视野也是比较小的。而检测一个物体的特征,比如鸟有鸟
    最近在看DQN的时候发现resnet模型又有点不太理解,于是把从CNN到Resnet的资料看了一遍,以防忘记,整个备忘录。    卷积神经网络(CNN),是深度学习中常见的一种网络结构,相比于传统的神经网络大量的神经节点带来的内存消耗过大和参数爆炸,CNN的出现很好解决了这一问题。一.CNN基本概念  &nbs
1、众所周知,tensorflow 是一个开源的机器学习框架,它的出现大大降低了机器学习的门槛,即使你没有太多的数学知识,它也可以允许你用“搭积木”的方式快速实现一个神经网络,即使没有调节太多的参数,模型的表现一般还不错。目前,tensorflow 的安装已经变得非常简单,一个简单的 pip install tensorflow 即可,然后 import tensorflow as tf 就能愉快
用tensorflow,pytorch这类深度学习库来写一个神经网络早就不稀奇了。可是,你知道怎么用python和numpy来优雅地搭一个神经网络嘛?现如今,有多种深度学习框架可供选择,他们带有自动微分、基于图的优化计算和硬件加速等各种重要特性。对人们而言,似乎享受这些重要特性带来的便利已经是理所当然的事儿了。但其实,瞧一瞧隐藏在这些特性下的东西,能更好的帮助你理解这些网络究竟是如何工作的。所以今
对TCN时空卷积网络进行简单的python实现,用于理解TCN网络运行机制并以备后查,运行环境为python3.8.6 ,创建项目目录如下: 1.其中test.csv和train.csv分别为测试和训练数据,为随机创建的回归数据,columns =[ a1,a2,a3,a4,a5,a6,a7,a8,y] 其中y是标签列; 2.run.py为执行脚本,实现训练-输出模型-测试-输出测试结果
Keras 构建CNN一.构建CNN准备Keras构建CNN准备不像Tensorflow那么繁琐,只需要导入对应的包就行。from keras.models import Sequential导入顺序模型,这是Keras最简单的模型Sequential 顺序模型,它由多个网络层线性堆叠。from keras.layers import Dense,Activation,Convolution2D,
转载 2023-12-01 08:43:40
182阅读
目录一、引言 二、卷积神经网络CNN)三、生成对抗神经网络(GAN)一、引言 二、卷积神经网络CNN) 一共有七层,分别为:C1:第一次卷积;S2:第一次池化;C3:第二次卷积;S4:第二次池化;C5:第一次全连接层;F6:第二次全连接层;OUTPUT:输出层。局部连接(权值共享):每个隐层神经元的权值是相同的,如下图: 全连接层:每个输入神经元都与每个
一、准备python环境以Windows平台为例:1.安装python3直接默认安装,并且添加到PATH。安装完毕后在命令行输入python回车查看是否安装成功。2.更换pip源在win+R运行输入%APPDATA%,点击确定,进入C:Users\用户名\AppData\Roaming文件夹,在该文件夹下新建文件夹pip,在pip下新建文本文件,在其中填入如下内容,然后将文件命名为pip,扩展名改
# Python CNN网络简介及示例 卷积神经网络CNN)是一种深度学习的特殊类型神经网络,主要用于图像识别与处理。它通过模拟人类视觉系统的工作原理,能有效地提取图像特征并进行分类。本篇文章将通过代码示例来说明CNN的基本原理及应用。 ## CNN的基本结构 CNN的主要构成部分包括卷积层、池化层和全连接层。每一层在网络中都有其特定的功能: 1. **卷积层**:负责提取图像特征。通过
原创 9月前
32阅读
平时做自然语言处理的时候,都会有用到CNN的模型,可是对于模型本身的算法具体过程还没有完全理解透彻! 因此阅读了一些文章书籍以及观看了一些课程,在这里尽量以通俗易懂的语言,以问答形式作一个总结,如有错误的地方劳烦指出!一 CNN是个什么鬼?它可以用来做什么? CNN的英文全称是Convolutional Neural Networks(可不是那个美国有线电视新闻网CNN哦), 中文名叫作卷积神
深度神经网络基础理解(pytorch)前言一、CNN是什么?二、CNN过程总结 前言随着社会的发展基于pytorch结构的深度神经网络越来越流行(分类问题,目标检测,人脸识别,目标追踪等等),现对CNN(卷积神经网络)以及基本定义与理解进行简单的论述以及针对Mnist数据分类问题代码实现与讲解,注意本文章使用pytorch框架。提示:以下是本篇文章正文内容,一、CNN是什么?CNN(Convol
个人觉得应该先写卷积操作的常见技术和公式操作,才能对卷积输入维度(结果),输出维度(结果)有更直观的了解吧。简单介绍一下卷积的常用trick:PaddingStriding下方是输入输出公式(本人开始也很困惑,找到对应公式后,就十分明朗了):n:原始输入的维度 | f:卷积核的大小 | p:padding的大小| s:stride的大小no padding: n - f + 1padding: n
本文实例为大家分享了基于TensorFlow的CNN实现Mnist手写数字识别的具体代码,供大家参考,具体内容如下一、CNN模型结构输入层:Mnist数据集(28*28)第一层卷积:感受视野5*5,步长为1,卷积核:32个第一层池化:池化视野2*2,步长为2第二层卷积:感受视野5*5,步长为1,卷积核:64个第二层池化:池化视野2*2,步长为2全连接层:设置1024个神经元输出层:0~9十个数字类
神经网络CNN)神经网络主要有三个部分组成, 分别为:网络结构 —— 描述神经元的层次与连接神经元的结构.激活函数(激励函数) —— 用于加入非线性的因素, 解决线性模型所不能解决的问题.参数学习方法的选择(一般为权重值W和偏置项b)一、CNN领域划分图像处理领域 图像识别图像标注图像主题生成图像内容生成…视频处理领域 视频分类视频标准视频预测…自然语言处理(NLP)领域 对话
转载 2024-05-04 18:17:35
102阅读
  • 1
  • 2
  • 3
  • 4
  • 5