• 个人觉得应该先写卷积操作的常见技术和公式操作,才能对卷积输入维度(结果),输出维度(结果)有更直观的了解吧。
  • 简单介绍一下卷积的常用trick:
  • Padding
  • Striding
  • 下方是输入输出公式(本人开始也很困惑,找到对应公式后,就十分明朗了):
    n:原始输入的维度 | f:卷积核的大小 | p:padding的大小| s:stride的大小
  • no padding: n - f + 1
  • padding: n +2p - f + 1
  • stride with padding : pytorch bn层搭建网络 pytorch cnn网络_pytorch

🌵 接下来以手写数字集为例,搭建一个CNN神经网络

1.导入需要使用的包并下载MNIST数据集

  • MNIST数据集:
  • 训练集:图片60000张,每张像素(28, 28), 灰度图所以没有通道数
  • 测试集:图片10000张,每张像素(28, 28)
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt

torch.manual_seed(1)   # 为了每次的实验结果一致
# 设置超参数
epoches = 2
batch_size = 50
learning_rate = 0.001

# 训练集
train_data = torchvision.datasets.MNIST(
    root="./mnist/",  # 训练数据保存路径
    train=True,       # True为下载训练数据集,False为下载测试数据集
    transform=torchvision.transforms.ToTensor(),  # 数据范围已从(0-255)压缩到(0,1)
    download=False,  # 是否需要下载
)
# 显示训练集中的第一张图片
print(train_data.train_data.size())   # [60000,28,28]
plt.imshow(train_data.train_data[0].numpy())
plt.show()

# 测试集
test_data = torchvision.datasets.MNIST(root="./mnist/", train=False)
print(test_data.test_data.size())    # [10000, 28, 28]
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)/255
test_y = test_data.test_labels

# 将训练数据装入Loader中
train_loader = train_loader = Data.DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True, num_workers=3)

2. 搭建CNN神经网络 重点!

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()   # 继承__init__功能
        ## 第一层卷积
        self.conv1 = nn.Sequential(
            # 输入[1,28,28]
            nn.Conv2d(
                in_channels=1,    # 输入图片的高度
                out_channels=16,  # 输出图片的高度
                kernel_size=5,    # 5x5的卷积核,相当于过滤器
                stride=1,         # 卷积核在图上滑动,每隔一个扫一次
                padding=2,        # 给图外边补上0
            ),
            # 经过卷积层 输出[16,28,28] 传入池化层
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2)   # 经过池化 输出[16,14,14] 传入下一个卷积
        )
        ## 第二层卷积
        self.conv2 = nn.Sequential(
            nn.Conv2d(
                in_channels=16,    # 同上
                out_channels=32,
                kernel_size=5,
                stride=1,
                padding=2
            ),
            # 经过卷积 输出[32, 14, 14] 传入池化层
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2)  # 经过池化 输出[32,7,7] 传入输出层
        )
        ## 输出层
        self.output = nn.Linear(in_features=32*7*7, out_features=10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)           # [batch, 32,7,7]
        x = x.view(x.size(0), -1)   # 保留batch, 将后面的乘到一起 [batch, 32*7*7]
        output = self.output(x)     # 输出[50,10]
        return output

3. 实现CNN

def main():
    # cnn 实例化
    cnn = CNN()
    print(cnn)

    # 定义优化器和损失函数
    optimizer = torch.optim.Adam(cnn.parameters(), lr=learning_rate)
    loss_function = nn.CrossEntropyLoss()

    # 开始训练
    for epoch in range(epoches):
        print("进行第{}个epoch".format(epoch))
        for step, (batch_x, batch_y) in enumerate(train_loader):
            output = cnn(batch_x)  # batch_x=[50,1,28,28]
            loss = loss_function(output, batch_y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
			# 为了实时显示准确率
            if step % 50 == 0:
                test_output = cnn(test_x)
                pred_y = torch.max(test_output, 1)[1].data.numpy()
                accuracy = ((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
                print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)


    test_output = cnn(test_x[:10])
    pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
    print(pred_y)
    print(test_y[:10])

if __name__ == "__main__":
    main()
  • 实时结果

pytorch bn层搭建网络 pytorch cnn网络_深度学习_02

  • 跑完后结果(准确率很高)

pytorch bn层搭建网络 pytorch cnn网络_深度学习_03

完整代码:

"""
    作者:Troublemaker
    功能:
    版本:
    日期:2020/4/5 19:57
    脚本:cnn.py
"""
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt

torch.manual_seed(1)
# 设置超参数
epoches = 2
batch_size = 50
learning_rate = 0.001

# 搭建CNN
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()   # 继承__init__功能
        ## 第一层卷积
        self.conv1 = nn.Sequential(
            # 输入[1,28,28]
            nn.Conv2d(
                in_channels=1,    # 输入图片的高度
                out_channels=16,  # 输出图片的高度
                kernel_size=5,    # 5x5的卷积核,相当于过滤器
                stride=1,         # 卷积核在图上滑动,每隔一个扫一次
                padding=2,        # 给图外边补上0
            ),
            # 经过卷积层 输出[16,28,28] 传入池化层
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2)   # 经过池化 输出[16,14,14] 传入下一个卷积
        )
        ## 第二层卷积
        self.conv2 = nn.Sequential(
            nn.Conv2d(
                in_channels=16,    # 同上
                out_channels=32,
                kernel_size=5,
                stride=1,
                padding=2
            ),
            # 经过卷积 输出[32, 14, 14] 传入池化层
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2)  # 经过池化 输出[32,7,7] 传入输出层
        )
        ## 输出层
        self.output = nn.Linear(in_features=32*7*7, out_features=10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)           # [batch, 32,7,7]
        x = x.view(x.size(0), -1)   # 保留batch, 将后面的乘到一起 [batch, 32*7*7]
        output = self.output(x)     # 输出[50,10]
        return output


# 下载MNist数据集
train_data = torchvision.datasets.MNIST(
    root="./mnist/",  # 训练数据保存路径
    train=True,
    transform=torchvision.transforms.ToTensor(),  # 数据范围已从(0-255)压缩到(0,1)
    download=False,  # 是否需要下载
)
# print(train_data.train_data.size())   # [60000,28,28]
# print(train_data.train_labels.size())  # [60000]
# plt.imshow(train_data.train_data[0].numpy())
# plt.show()

test_data = torchvision.datasets.MNIST(root="./mnist/", train=False)
print(test_data.test_data.size())    # [10000, 28, 28]
# print(test_data.test_labels.size())  # [10000, 28, 28]
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255
test_y = test_data.test_labels[:2000]

# 装入Loader中
train_loader = Data.DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True, num_workers=3)


def main():
    # cnn 实例化
    cnn = CNN()
    print(cnn)

    # 定义优化器和损失函数
    optimizer = torch.optim.Adam(cnn.parameters(), lr=learning_rate)
    loss_function = nn.CrossEntropyLoss()

    # 开始训练
    for epoch in range(epoches):
        print("进行第{}个epoch".format(epoch))
        for step, (batch_x, batch_y) in enumerate(train_loader):
            output = cnn(batch_x)  # batch_x=[50,1,28,28]
            # output = output[0]
            loss = loss_function(output, batch_y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if step % 50 == 0:
                test_output = cnn(test_x)  # [10000 ,10]
                pred_y = torch.max(test_output, 1)[1].data.numpy()
                # accuracy = sum(pred_y==test_y)/test_y.size(0)
                accuracy = ((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
                print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)


    test_output = cnn(test_x[:10])
    pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
    print(pred_y)
    print(test_y[:10])

if __name__ == "__main__":
    main()