# SURF特征匹配Python实现 ## 引言 在计算机视觉领域,图像特征匹配是一项重要的任务,它可以在不同图像之间找到相似的特征点。SURF(Speeded-Up Robust Features)是一种常用的特征描述算法,它具有快速、鲁棒性强等优点,被广泛应用于图像识别、目标跟踪等任务中。本文将介绍SURF特征匹配的原理、算法实现以及使用Python实现的示例代码。 ## SURF
原创 2023-08-21 03:59:36
416阅读
SURF特征是一种图像的局部特征,当目标图像发生旋转、尺度缩放、亮度变化时,具有保持不变性,并且对视角变化、仿射变换和噪声等也具有保持一定程度的稳定性。SURF特征提取算法的流程主要包括:特征点检测、特征点描述和特征匹配三部分。特征点检测采用了基于Hessian矩阵的检测器,其在稳定性和可重复性方面都优于基于Harris的检测器。特征点描述采用Haar小波作为特征描述子,由于Harr特征最大的特
分为几个部分。积分图:借助积分图像,图像与高斯二阶微分模板的滤波转化为对积分图像的加减运算。在哈尔特征中也用到这个。 DoH近似:将...
原创 2022-01-18 09:42:52
244阅读
SURF特征匹配
原创 2024-08-15 09:24:02
170阅读
Speeded Up Robust Features(SURF,加速稳健特征),是一种稳健的局部特征点检测和描述算法。与Sift算法一样,Surf算法的基本路程可以分为三大部分:局部特征点的提取、特征点的描述、特征点的匹配SURF的算法原理如下:1.构建Hessian矩阵构造高斯金字塔尺度空间事实上surf构造的金字塔图像与sift有非常大不同,就是由于这些不同才加快了其检測的速度。Sift採用
转载 2024-05-14 09:54:06
262阅读
Python常见特性数据结构集合中筛选数据eg : 将数组、字典、集合中的小于0的数去除掉数组:a = [9, 5, -2, -3, 6, 1, -5, -10, 3, 4] # 数组推导式 b = [for i in a if i > 0] # filter 返回一个生成器 b = filter(lambda x:x>0, a)字典k = { "a": 23, "b": 9,
转载 2023-10-27 11:43:18
127阅读
一. SIFT原理(尺度不变特征变换)SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,它对物体的尺度变化,刚体变换,光照强度和遮挡都具有较好的稳定性,可在图像中检测出关键点,是一种局部特征描述子。SIFT 算法被认为是图像匹配效果好的方法之 一算法实现特征匹配主要有三个流程:①特征
原文:目前图像匹配中,局部特征匹配占据了绝大部分,常用的局部特征匹配方法有Harris、SIFT、SURF、ORB等等,不同的特征点检测和匹配方法尤其独特的优势和不足; 特征匹配经过Ransac算法优化后仍存在错误匹配点对,需要优化后的匹配结果进行量化评价; 特征点检测和匹配评价一般包括两个部分,分别为检测和匹配的评价。1、特征点检测评价repeatability(重复率)
离散特征编码分两种,特征具有大小意义,特征不具有大小意义。1、特征不具备大小意义的直接独热编码2、特征有大小意义的采用映射编码1. import pandas as pd 2. df = pd.DataFrame([ 3. 'green', 'M', 10.1, 'label1'], 4. 'red', 'L', 13.5, 'label2'], 5. 'blue
转载 2023-06-26 14:15:42
61阅读
"花海"一、特征检测1.Harris角点检测2. shi-tomasi角点检测3. SIFT关键点检测4. 关键点和描述子二、几种角点特性 希望有能力的朋友还是拿C++做。本节讨论特征检测,主要是Harris,shi-tomasi,sift三种方法和对比,以及原理简介,还有关键点和描述子的概念介绍。一、特征检测特征检测包括边缘检测,角检测,区域检测和脊检测。应用场景:图像搜索(如以图搜图),拼图
  import cv2 import numpy as np def drawMatchesKnn_cv2(img1_gray,kp1,img2_gray,kp2,goodMatch): h1, w1 = img1_gray.shape[:2] h2, w2 = img2_gray.shape[:2] vis = np.zeros((max(h1, h2), w1
转载 2017-12-16 10:32:00
394阅读
2评论
了解了SIFT特征后,来学习SURF特征。 虽说是SIFT的一个变种,可是跟SIFT还是有差别的 差别有例如以下:1.尺度空间的构建(近似)不同。2.同意尺度空间多层图像同一时候被处理3.特征点主方向确定採用haar小波特征统计方法。4.特征点描写叙述子採用haar小波特征。 接下来贴个SURF匹...
转载 2014-07-13 19:44:00
296阅读
2评论
# SURF匹配 Python实现 ## 1. 概述 在本文中,我们将介绍如何使用Python实现SURF(Speeded Up Robust Features)图像匹配算法。SURF是一种在计算机视觉领域中常用的特征匹配算法,它能够在图像中找到具有稳定性和独特性的特征点,并进行匹配。 本文将以以下步骤为基础,逐步教您实现SURF图像匹配算法。 ## 2. SURF图像匹配流程 下表总
原创 2023-08-13 04:06:53
420阅读
Speeded Up Robust Features(SURF,加速稳健特征),是一种稳健的局部特征点检测和描述算法。最初由Herbert Bay发表在2006年的欧洲计算机视觉国际会议(Europen Conference on Computer Vision,ECCV)上,并在2008年正式发表在Computer Vision and Image Understanding期刊上。Surf是对
转载 2016-09-20 23:54:00
312阅读
15点赞
2评论
SURF算法是对SIFT算法的改进,其基本结构、步骤与SIFT相近,但具体实现的过程有所不同。SURF算法的优点是速度远快于SIFT且稳定性好。1.构建Hessian矩阵,构造高斯金字塔尺度空间SIFT采用的是DoG图像,而SURF采用的是Hessian矩阵行列式近似值图像。每个像素点都可以求出一个H矩阵,H矩阵 有一个判别式,判别式的值是H矩阵的特征值,可以利用判定结果的符号将所有点分类,根据判
1. SURF比于SIFTSURF(Speeded Up Robust Features)是对SIFT的改进版本,改进后的主要优点是速度更快,更适合做实时的特征检查。对于需要实时运算的场合,如基于特征匹配的实时目标跟踪系统,每秒要处理8-24帧的图像,需要在毫秒级内完成特征点的搜索、特征矢量生成、特征矢量匹配、目标锁定等工作,这样SIFT算法就很难适应这种需求了。实验证明,SURF算法较SIFT
目录结构.├── build├── CMakeLists.txt├── main.cpp├── t1.jpg└── t2.jpg/* * @file SURF_FlannMatcher * @brief SURF detector + d
原创 2023-01-20 10:39:28
142阅读
在这篇文章中,我们将整理计算机视觉项目中常用的Python库,如果你想进入计算机视觉领域,可以先了解下本文介绍的库,这会对你的工作很有帮助。1 PillowPillow是一个通用且用户友好的Python库,提供了丰富的函数集和对各种图像格式的支持,使其成为开发人员在其项目中处理图像的必要工具。它支持打开、操作和保存许多不同的图像文件格式,用户还可以对图像执行基本操作,如裁剪、调整大小、旋转和更改图
在上篇博客特征点检测学习_1(sift算法)中简单介绍了经典的sift算法,sift算法比较稳定
原创 2022-01-13 10:36:26
2034阅读
SURF算法在工业检测分析一.工业场景应用场景应用说明,在工业检测中我们需要对一个工件进行位置补正,来确定工件在平面坐标系的位置,得到位置参数才可以进一步的针对特定位置进行图像处理。比如我们跟踪一副名片的某一局部位置。               &
转载 2023-10-25 07:00:53
73阅读
  • 1
  • 2
  • 3
  • 4
  • 5