一、SIFT提出的目的和意义二、SIFT的特征简介三、SIFT算法实现步骤简述四、图像集五、匹配地理标记图像六、SIFT算法代码实现代码结果截图小结七、SIFT实验总结八、实验遇到的问题 一、SIFT提出的目的和意义1999年David G.Lowe教授总结了基于特征不变技术的检测方法,在图像尺度空间基础上,提出了对图像缩放、旋转保持不变性的图像局部特征描述算子-SIFT(尺度不变特征变
转载
2023-07-20 21:02:18
156阅读
文章目录一、简述SIFT特征提取与检索二、SIFT特征提取与检索原理三、实验要求四、实验代码1.特征点展示 sift1.py2.描述子算法 sift2.py3.检索匹配算法 sift3.py4.局部描述子进行匹配 sift4.py5.可视化连接图像 sift5.py五、实验结果及分析六、总结 一、简述SIFT特征提取与检索1999年David G.Lowe教授总结了基于特征不变技术的检测方法,在
转载
2023-12-07 07:23:16
317阅读
SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,它在空间尺度中对一副图寻找极值点,并提取出其位置、尺度、旋转不变量等描述子得到特征并进行图像特征点匹配,用来侦测与描述影像中的局部性特征。 它是基于物体上的一些局部特征SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性;使用
转载
2024-08-23 18:37:46
106阅读
SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下:
原创
2017-05-18 17:50:32
1802阅读
98 SIFT特征提取—关键点提取代码import cv2 as cv
import numpy as np
src = cv.imread("../images/flower.png")
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", src)
sift = cv.xfeatures2d.SIFT_create()
SIFT(Scale-Invariant Feature Transform)是一种具有尺度不变性和光照不变性的特征描述子,也同时是一套特征提取的理论,首次由D. G. Lowe于2004年以《Distinctive Image Features from Scale-Invariant Keypoints[J]》发表于IJCV中。开源算法库OpenCV中进行了实现、扩展和使用。 本文主要依据原
SIFT(Scale-invariant feature transform)是一种检測局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描写叙述子得到特征并进行图像特征点匹配,获得了良好...
转载
2015-01-20 10:13:00
218阅读
SIFT(Scale-invariant feature transform)是一种检測局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描写叙述子得到特征并进行图像特征点匹配,获得了良好...
转载
2014-12-26 19:26:00
148阅读
一、综述Scale-invariant feature transform(简称SIFT)是一种图像特征提取与匹配算法。SIFT算法由David.G.Lowe于1999年提出,2004年完善总结,后来Y.Ke(2004)将其描述子部分用PCA代替直方图的方式,对其进行改进。SIFT算法可以处理两幅图像之间发生平移、旋转、尺度变化、光照变化情况下的特征匹配问题,并能在一定程度上对视角变化
转载
2023-11-06 19:46:54
186阅读
SIFT(Scale-invariant feature transform)是一种检測局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描写叙述子得到特征并进行图像特征点匹配,获得了良好...
转载
2014-08-11 17:16:00
149阅读
2评论
SIFT(Scale-invariant feature transform)是一种检測局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描写叙述子得到特征并进行图像特征点匹配,获得了良好...
转载
2015-05-15 09:32:00
116阅读
2评论
Sift特征点提取Sift算法算法简介算法操作步骤图像金字塔高斯金字塔高斯函数与图像卷积分离高斯卷积高斯金子塔源码分析高斯差分金字塔差分金字塔的建立差分金字塔源码分析空间极值点(关键点)检测(最关键一步)极值点检测过程极值点检测示意极值点检测源码分析关键点定位关键点精确定位消除边缘响应精确定位中的泰勒插值源码分析为关键点方向分配特征点描述符本章疑问 Sift算法算法简介尺度不变特征转换即SIFT
转载
2023-12-01 06:09:04
214阅读
学到SIFT看到了参考了最下面的四篇文章,最后综合起来,根据自己的理解,按着自己的想法,手敲了下面的内容,感觉好长,不过希望对大家有用。Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orien
SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果
转载
2022-03-22 15:37:37
234阅读
一、SIFT特征简介:1.1算法简介: 尺度不变特征转换即SIFT (Scale-invariant feature transform)是一种计算机视觉的算法。它用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量。 局部影像特征的描述
转载
2023-12-05 23:33:00
970阅读
SIFT 特征点提取SIFT 是一种从图像中提取独特不变特征的方法,其特点为基于图像的一些局部特征,而与图像整体的大小和旋转无关。并且该方法对于光照、噪声、仿射变换具有一定鲁棒性,同时能生成大量的特征点。SIFT 的具体步骤尺度空间极值检测: 使用差分高斯函数识别潜在的兴趣点特征点定位:剔除对比度不高和处于边界位置的特征点分配方向:计算特征点的方向用于下一步构建描述特征点描述:尺度空间极值检测尺度
转载
2024-02-04 02:49:50
94阅读
SIFT(Scale-invariant feature transform) 是一种提取局部特征的技术。它将图片中的较为稳定的特征点提取出来,进行处理后生成描述符,形成独特的SIFT特征。这些特征具有尺度,旋转不变性,可以利用这些SIFT特征对图像进行匹配,识别。越是感受到SIFT在计算机视觉领域的应用之广,越是能够受到这篇论文的优美。 SIFT特征提取主
文章目录前言一、建立高斯差分金字塔1、建立高斯金字塔2、建立高斯差分金字塔3、建塔过程中参数的设定及相关细节问题二、关键点(key points)位置确定1、阈值化2、在高斯差分金字塔中找极值点3、调整极值点位置4、舍去低对比度的点5、边缘效应的去除(难点)三、为关键点赋予方向1、亚像素点尺度去对应离散点尺度2、统计3、找到主方向四、构建关键点的描述符1、旋转至主方向所在方向2、确定关键点附近区
转载
2024-03-19 09:25:23
92阅读
SIFT算法SIFT即尺度不变特征变换,是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。一、SIFT算法特点:1、具有较好的稳定性和不变性,能够适应旋转、尺度缩放、亮度的变化,能在一定程度上不受视角变化、仿射变换、噪声的干扰。 2、区分性好,能够在海量特征数据库中进行快速准确的区分信息进行匹配 3、多量性,就算只有单个物体,也能产生大量特征向量
转载
2024-04-02 07:47:44
52阅读
本文只记录sift特征提取过程和sift的扩展应用,并分析了opensift的代码。如果想详细理解sift的理论知识请参见Rachel-Zhang的文章。这里没分析OpenCV的代码,是因为相比之下opensift代码结构更加清楚,可读性更好。一、SIFT提取过程对图像宽高放大1倍,并假定图像已被0.5高斯滤波过,为了达到初始为1.6高斯的效果,再用1.62−0.52−−−−−−−−−√高斯滤波一
转载
2024-07-31 17:03:13
52阅读