OpenCV学习】(十二)图像分割与修复背景图像分割本质就是将前景目标从背景中分离出来。在当前的实际项目中,应用传统分割的并不多,大多是采用深度学习的方法以达到更好的效果;当然,了解传统的方法对于分割的整体认知具有很大帮助,本篇将介绍些传统分割的一些算法;一、分水岭法原理图如下:利用二值图像的梯度关系,设置一定边界,给定不同颜色实现分割;实现步骤:标记背景 —— 标记前景 —— 标记未知区域(背
积分图&边缘检测一、积分图1.1 标准求和积分cv2.integral()1.2 平方和求积分cv2.integral2()1.3 倾斜求和积分cv2.integral3()二、Canny边缘检测cv2. Canny() 一、积分图积分图是一种允许子区域内像素快速求和的数据结构。 opencv支持积分图的三种变体分别为:求和、平方求和、倾斜求和。每种情况的结果在图像的每个方向上都加1之后
在处理图像数据时,使用 Python切分 TIFF 格式的图像是一项常见的任务,尤其是在图像处理和计算机视觉领域。结合 OpenCV 库,我们可以实现快速且高效的 TIFF 图像切分功能。本文将详细记录解决这一问题的过程,包括背景定位、参数解析、调试步骤、性能调优、排错指南和生态扩展。 ## 问题场景 在处理高分辨率的 TIFF 图像时,往往需要将图像切分为多个小块,以便于后续的分析和处理
原创 6月前
89阅读
@ 目录 一、通道切分合并 二、图像金字塔图像金字塔 高斯金字塔 拉普拉斯金字塔 一、通道切分合并 # 通道切分 (R, G, B) = cv2.split(image) # 通道合并 merged = cv2.merge([R,G,B]) 二、图像金字塔 图像金字塔 一般情况下,我们要处理是一副具有固定分辨率的图像。但是有些情况下,我们需要对同一图像的不同分辨率的子图像进行处理。
转载 2020-06-19 16:17:00
139阅读
2评论
在工作中。在做数据集时,需要对图片进行处理,照相的图片我们只需要特定的部分,所以就想到裁剪一种所需的部分。当然若是图片有规律可循则使用opencv对其进行膨胀腐蚀等操作。这样更精准一些。一、指定图像位置的裁剪处理import os import cv2 # 遍历指定目录,显示目录下的所有文件名 def CropImage4File(filepath,destpath): pathDir = os.
opencv官方文档:https://docs.opencv.org/3.4.1/da/d6e/tutorial_py_geometric_transformations.html opencv-python图像几何变换一、缩放二、平移三、旋转四、仿射变换1.opencv显示仿射变换前后的图像2.获取原图像上经仿射变换后的坐标五、透视变换1.opencv显示透视变换前后的图像2.获取原图像上经透视
转载 2023-08-30 06:36:01
2阅读
使用opencv分割图像python实现)概述 本人在做无人农机的时候需要进行图像处理,寻找目标物并进行分割,于是总结网络各种小车寻迹等等demo,自己也终于把图像颜色分割做的七七八八,特来记录一下,留作以后参考。过程导包import numpy as np import cv2读取图片(此处可以换成视频流,具体可以百度一下,原理相同,都是对一帧图片进行处理)image = cv2.imread
快速获得最新干货概述图像拼接是计算机视觉中最成功的应用之一。如今,很难找到不包含此功能的手机或图像处理API。在这篇文章中,我们将讨论如何使用PythonOpenCV执行图像拼接。鉴于一对共享一些共同区域的图像,我们的目标是“缝合”它们并创建全景图像场景。在整篇文章中,我们将介绍一些最着名的计算机视觉技术。这些包括:关键点检测局部不变描述符(SIFT,SURF等)特征匹配使用RANSAC进行的旋
图像拼接可以理解为三大步:按顺序读取多幅图像,并保证图像按照从左到右的顺序。发现这些图像像素之间的相关性(涉及到单应性)。将这些图像拼接成为一张全景图像。首先,需要了解如下几个概念。SIFT特征提取图像匹配计算单应矩阵假设我们使用同一部相机,用不同视角拍了两张照片,那么如何对这两张图片视角变换进行建模,将相邻的两张图片联系起来,就成为了一个问题。上图展示了一些几何变换。单应矩阵的作用在于,将图像
本文仅做为本人学习记录。一、简介:OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。今天我们就是用python学习OpenCV。二、读取与
转载 2023-11-01 21:23:24
57阅读
今天急需拼接几张差不多大小的图片,于是应用Opencv的一部分知识自己做了个程序: 可以随意拼接图片(横着、竖着、任意指定图片个数) 源码如下:import cv2 import numpy as np import os import pytesseract from matplotlib import pyplot as plt from PI
转载 2023-07-17 16:27:50
142阅读
demo01.py#模板匹配是识别方法,可在原始图像中寻找特定图像的位置。 import cv2 import numpy as np import math # ——————————————————————————模板匹配方法 # result = cv2.matchTemplate(image,templ,method,mask) #参数依次是:原始
摘要:使用基于pythonopencv中的sift算法检测图像中的特征点。通过knn匹配,每个关键点两个match,即最近邻与次近邻。 采用SIFT作者提出的比较最近邻距离与次近邻距离的SIFT匹配方式来筛选出最近邻远优于次近邻的匹配作为good matches。最后,根据投影映射关系,使用计算出来的单应性矩阵H进行透视变换,再进行拼接。准备:首先,准备好几个库:import cv2 impor
么是图像拼接呢?简单来说,对于输入应该有一组图像,输出是合成图像。同时,必须保留图像之间的逻辑流。首先让我们了解图像拼接的概念。基本上,如果你想捕捉一个大的场景,你的相机只能提供一个特定分辨率的图像(如:640×480),这当然不足以捕捉大的全景。所以,我们可以做的是捕捉整个场景的多个图像,然后把所有的碎片放在一起,形成一个大的图像。这些有序的照片被称为全景。获取多幅图像并将其转换成全景图的整个过
最近做了一个小实验,内容是图像的增强与合成,觉着挺有意思,记录一下。 首先效果是这样的: 利用PythonOpencv算法,实现下述功能: 1、 准备本人在纯色背景前的照片,并且要求背景颜色与皮肤、衣服的颜色区别较大。 2、 准备一张与上述人像图像大小相同的风景图片。(或者使用reshape) 3、 利用图像增强算法处理人像照片,以提升照片的品质。 4、 利用图像处理算法将步骤3得到的照片中背景
本小节,我们将学习在Python语言中利用OpenCV库来实现图片的读取、显示、保存,所有的这些图片都是一个numpy.ndarray,这三种操作都过cv2.imread()、cv2.imshow()、cv2.imwrite()三个函数来实现,同时在文末,简要介绍了使用Matplotlib来显示图片。本文所使用opencvopencv3.2版本,图片如下:1. 读取图片在OpenCV中使用cv2
对于倾斜的图片通过矫正可以得到水平的图片。一般有如下几种基于opencv的组合方式进行图片矫正。1、傅里叶变换 + 霍夫变换+ 直线 + 角度 + 旋转 2、边缘检测 + 霍夫变换 + 直线+角度 + 旋转 3、四点透视 + 角度 + 旋转 4、检测矩形轮廓 + 角度 + 旋转#include <opencv2/core/core.hpp> #include <opencv2/i
转载 2023-10-23 12:30:59
413阅读
1点赞
如何使用OPENCV获取图像 现在正在学习 OPENCV,与大家分享一下使用OPENCV获取图像的心得。首先给出源代码:#include<highgui.h> int main(int argc,char**argv) { IplImage* img=cvLoadImage("argv[1]"); cvNamedWindow("Examp
      前面一篇教程中,我们实现了Zhang的快速并行细化算法,从算法原理上,我们可以知道,算法是基于像素8邻域的形状来决定是否删除当前像素。还有很多与此算法相似的细化算法,只是判断的条件不一样。在综述文章, Thinning Methodologies-A Comprehensive Survey中描述了各种细化算法的实现原理,有兴趣可以阅读
简 介: 本文中我们讨论了利用 C++, Python图像进行剪切的基本方法, 这些方法都是应用了对于矩阵的切片操作完成的。指定剪切图片在图像数据矩阵中对应的高、宽的范围,对应范围的数据代表了切割出来的图像。通过 imwirte, imshow 可以将切割下的图片进行存储和显示。 后面也进一步讨论了如何对大的图片进行分割,形成许多小的图片的方法。关键词: 图片剪切,crop
  • 1
  • 2
  • 3
  • 4
  • 5