1.skimage的API noise_gs_img = util.random_noise(img,mode='gaussian') # gaussian 高斯加性噪声。 noise_salt_img = util.random_noise(img,mode='salt')#盐噪声,随机用1替换像素。属于高灰度噪声。 noise_pepper_img = util.random_n
在早先的章节里,我们看到很多图像平滑技术如高斯模糊,Median模糊等,它们在移除数量小的噪音时在某种程度上比较好用。在这些技术里,我们取像素周围的一小部分邻居,做一些类似于高斯平均权重,中值等替换掉中间的元素。简单说,移除一个像素的噪音是基于本地邻居的。噪音有一个属性,噪音一般被认为是具有零平均值的随机变量。假设一个像素噪音,p = p0 + n, 其中p0是像素的真实值,n是那个像素的噪音。你
目录零之前言一.轮廓检测1.简述2.实现①参数②返回值二.绘制轮廓1.实现三.轮廓的特征1.矩2.图像的重心3.轮廓面积4.轮廓周长5.近似轮廓6.凸包7.边界矩形①正矩形②旋转矩形8.最小外接圆三.轮廓的性质1.极点2.轮廓匹配零之前言本节内容,书里的内容可能有些问题,需要额外的查询更多的博客,然后我又放出一位写的比较好的博客:一.轮廓检测1.简述轮廓检测主要是利用cv2.findContour
转载 2023-08-06 13:57:32
180阅读
你的序列均值为零吗?方差随时间变化吗?值与延迟值相关吗?你可以用一些工具来检查你的时间序列是否为白噪音:创建一个折线图。检查总体特征,如变化的平均值,方差或延迟变量之间的明显关系。计算汇总统计。对照序列中有意义的连续块的均值和方差,检查整个序列的均值和方差(如年、月、日)。创建一个自相关的图。检查延迟变量之间的总体相关性。白噪声时间序列的例子在本节中,我们将使用Python创建一个高斯白噪声序列并
Python-多维矩阵添加高斯噪声 文章目录Python-多维矩阵添加高斯噪声步骤一:创建多维矩阵涉及知识点1. 利用numpy创建多维随机矩阵2. 查看变量的数据类型3. 将变量的数据类型由float64转换为float32步骤二:定义添加高斯噪声的函数方法一:向多维矩阵中的元素逐个添加高斯噪声涉及知识点1. 获取变量的大小2. 生成具有高斯分布的随机浮点数方法二:定义一个与多维矩阵等大的高斯噪
转载 2023-09-12 09:58:53
793阅读
本文介绍如何利用Python自行生成随机序列,实现了 Whichmann / Hill 生成器。参考:  [1]Random Number Generation and Monte Carlo Methods(P.47)  [2]简单产生白噪声的算法  [3]各种分布白噪声的产生 基本原理   本文粗略将随机数分为两种:均匀分布以及非均匀分布。均匀分布随机数通过非线性变换可得到
转载 2023-06-29 08:53:24
191阅读
一、简介(主要特点 + 适用场景 + 去噪方法)噪声类型类型属性分布模型主要特点适用场景去噪方法均匀噪声加性噪声均匀分布灰度扰动在指定范围内均匀分布,模拟广义背景噪声图像增强、噪声容忍测试、合成训练样本线性滤波(如均值滤波、GaussianBlur)高斯噪声加性噪声正态分布灰度值围绕均值上下波动,模拟传感器热噪声和读取误差图像去噪、滤波算法验证(如高斯滤波、双边滤波)高斯滤波、双边滤波、非局部均值
opencv for python轮廓(1)一、:图像轮廓检测以及绘制轮廓1.轮廓简介:2.需用函数:3.代码实现如下:4.图像近似方法说明:二、:图像轮廓的矩、面积和周长1.图像的矩(image moments)2.图像的面积3.图像的周长4.代码实现 一、:图像轮廓检测以及绘制轮廓1.轮廓简介:轮廓是颜色或者灰度相同的边界点连成的边界曲线,轮廓在物体形状分析以及轮廓检测和识别中很有用。轮廓
1.参数主要是上面这两个参数,比如说X可以是经过tsne降维的n_feature=2的二维矩阵,第一维表示样本数量,labels为真实的label,这样的话可以得出轮廓系数的结果。labels:是array类型的,需要是int型的label,通过LabelEncoder编码一下即可。2.计算方法轮廓系数(Silhouette Coefficient),是聚类效果好坏的一种评价方式。它结合内聚度和分
转载 2023-06-14 00:49:16
201阅读
轮廓分析(silhouette analysis)可用于研究聚类结果之间的分离距离。轮廓图是一个聚类中的每个点与相邻聚类中的点之间接近程度的度量指标,从而提供了一种直观地评估参数(如聚类的数量)的方法。此度量指标的范围为[-1,1]。 接近+1的(被称为)轮廓系数的值表示相邻聚类的样本距离很远;值为0表示样本在两个相邻聚类之间的决策边界上或非常接近决策边界;而负值表示这些样本可能已分配给错误的
轮廓系数(Silhouette Coefficient)是聚类分析中用来评估聚类效果的一个重要指标,能够帮助我们理解数据的分布特征。在 Python 中,计算和分析轮廓系数提供了丰富的工具和函数,使得数据分析师和机器学习工程师能够更有效地评估其算法性能和数据划分结果。 ### 协议背景 轮廓系数的计算是基于数据点间距离的一个度量,其值范围在 -1 到 1 之间。数值越高,代表数据点被正确地聚类,
原创 6月前
40阅读
这篇也是很久之前写的,因为是之前的实验,然后写这篇的时候,因为python写的,而且是自己写的函数,完全就是根据定义和式子来写的代码,所以的话时间复杂度很高,跑的时候会比较慢,需要多等一会,不是代码问题添加椒盐噪声函数主要采用随机数来确定现在所在的像素点是否要添加噪声,由椒盐噪声阈值来确定,这个值可以自己定,随机生成的随机数如果大于这个阈值那么添加胡椒噪声,如果小于这个阈值那么添加盐噪声,不难,代
转载 2023-10-19 11:06:33
100阅读
Python OpenCV 365 天学习计划,与橡皮擦一起进入图像领域吧。本篇博客是这个系列的第 48 篇。 Python OpenCV学在前面轮廓检测与轮廓特征cv2.findContours 函数返回值 contours轮廓特征矩轮廓面积轮廓周长外接矩形其余补充学习橡皮擦的小节 学在前面图像金字塔学习的时候,就要想着有个金字塔在你眼前,这个金字塔最底部是你的原图像(源图像)。关于图像金字塔
轮廓可以简单的看做连续的点(包括边界)连成的曲线,他们具有相同的颜色或者灰度。主要应用在形状分析和物体的检测与识别。处识轮廓一般来说为了更加准确,要使用二值化图象,在寻找轮廓之前,进行阈值化处理或者Canny边缘检测;查找轮廓的函数会更改原始图象,如果后期还想使用原始图像的话最好找另一个变量储存;一般物体是白色而背景是黑色。 这里哟两个函数cv2.findContours()和cv2.drawC
转载 2024-02-28 21:59:56
81阅读
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm12.2 绘制图像轮廓:drawContours函数在OpenCV中,可以使用函数cv2.drawContours()绘制图像轮廓。该函数的语法格式是:image=cv2.drawContours( image, contours, contourIdx, color[, thickness[
 图像轮廓检测 轮廓检测的原理是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现的结果api介绍findContours发现轮廓 drawContours绘制轮廓  1.函数原型:cv2.findContours(image, mode, method, contours=None, hierarchy=None, offset=No
一、随机噪声、高斯噪声和椒盐噪声1、效果展示  2、代码部分import cv2 import numpy as np from PyQt5.QtCore import QThread import random class Noise(QThread): def __init__(self): super(Noise, self).__init__(
转载 2023-06-16 15:59:51
292阅读
几种常见噪声高斯噪声概率密度函数服从高斯分布的噪声。 产生原因: 1)图像传感器在拍摄时市场不够明亮、亮度不够均匀; 2)电路各元器件自身噪声和相互影响; 3)图像传感器长期工作,温度过高代码实现:def gasuss_noise(image,mean=0,var=0.001): ''' 手动添加高斯噪声 mean : 均值 var : 方差 '''
Python-Opencv 轮廓常用操作1.颜色空间转换使用cv2.cvtColor(input_image ,flag),flag为转换类型常用的转换类型有:BGR和灰度图的转换使用 cv2.COLOR_BGR2GRAYBGR和HSV的转换使用 cv2.COLOR_BGR2HSVimg_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)2.二值化ret, d
所用函数简介cv2.threshold() 二值化cv2.threshold(src, thresh, maxval, type[, dst]) → retval, dst参数意义src表示的是图片源thresh表示的是阈值(起始值)maxval表示的是最大值type表示的是这里划分的时候使用的是什么类型的算法,常用值为0(cv2.THRESH_BINARY)cv2.findContours()
转载 2023-08-18 14:43:56
268阅读
  • 1
  • 2
  • 3
  • 4
  • 5