一、CPU和GPU交互1.各自有自己的物理内存空间,CPU的是内存,GPU的是显存2.通过PCI-E总线互连(8GB/S~16GB/S)3.交互开销较大  GPU各存储访存速度:Register寄存器,最快Shared Memory,共享存储,很快Local Memory,本地存储,在显存中,有缓存,相对较慢Global Memory,全局存储,在显存中,有缓存,相对较慢Con
转载 2023-10-20 06:59:19
81阅读
4.jpeg CDA数据分析师 出品相信大家在做一些算法经常会被庞大的数据量所造成的超多计算量需要的时间而折磨的痛苦不已,接下来我们围绕四个方法来帮助大家加快一下Python的计算时间,减少大家在算法上的等待时间。以下给大家讲解关于数据并行化这方面的内容。1.介绍随着时间和处理器计算能力的增长,数据呈指数级增长,我们需要找到有效地处理数据的方法。那我们应
转载 2023-11-24 21:15:30
93阅读
一、多张gpu的卡上使用keras有多张gpu卡时,推荐使用tensorflow 作为后端。使用多张gpu运行model,可以分为两种情况,一是数据并行,二是设备并行。二、数据并行数据并行将目标模型在多个设备上各复制一份,并使用每个设备上的复制品处理整个数据集的不同部分数据。利用multi_gpu_model实现keras.utils.multi_gpu_model(model, gpus=Non
转载 2023-09-11 21:39:52
0阅读
streaming processor(sp): 最基本的处理单元,streaming processor 最后具体的指令和任务都是在sp上处理的。GPU进行并行计算,也就是很多个sp同时做处理。现在SP的术语已经有点弱化了,而是直接使用thread来代替。一个SP对应一个thread。Warp:warp是SM调度和执行的基础概念,同时也是一个硬件概念,注意到Warp实际上是一个和硬件相关的概念,
转载 2023-11-02 08:46:43
213阅读
对于初次使用GPU加速代码的学习者来说,需要在电脑上安装支持GPU加速的部件,分以下三个步骤:安装支持GPU版本的Pytorch(非cpu版本)安装GPU版本的pytorch,在如下地址进入下载:https://pytorch.org/ 请选择好自己的操作系统和CUDA版本,使用图中的命令在Anaconda Prompt中运行‘run this Com
主要参考博文:应用特点:GPU并行吞吐量大,适合大数据并行处理;CPU适合逻辑处理和串行计算,适合多任务并行处理;GPU工作模式 1)CPU 具有独立的内存和寄存器,GPU也具有独立的显存和寄存器。CPU作为主控制器,CPU和 GPU 协同处理任务,GPU主要处理可以高度并行的数据处理任务,CPU则负责逻辑处理和串行计算相关任务。2)GPU上的程序被称为内核函数,也叫kernel。kernel是并
转载 2023-09-20 06:58:11
266阅读
目录准备需要有支持CUDA的Nvidia显卡 linux查看显卡信息:lspci | grep -i vga 使用nvidia显卡可以这样查看:lspci | grep -i nvidia 上一个命令可以得到类似"03.00.0"的显卡代号,查看详细信息:lspic -v -s 03.00.0 查看显卡使用情况(nvidia专用):nvidia-smi 持续周期性输出使用情况(1秒1次):watc
转载 2023-08-16 17:17:44
165阅读
# GPU并行编程与Python:让计算更高效 在现代计算任务中,尤其是深度学习、高性能计算和大规模数据分析等领域,GPU(图形处理单元)因其强大的并行处理能力而成为首选工具。虽然传统上,GPU主要用于图形渲染,但如今它们在科学计算和数据处理方面的作用也日益凸显。本文将介绍如何在Python中使用GPU进行并行编程,并提供相关示例代码,以帮助开发者提升数据处理的效率。 ## 什么是GPU并行
如何实现 Python GPU 并行 TensorFlow --- **摘要**:本文将介绍如何实现 Python GPU 并行 TensorFlow。我们将通过以下步骤逐步指导你完成整个过程。 --- **目录** - [简介](#简介) - [步骤](#步骤) - [步骤1:安装 CUDA 和 cuDNN](#步骤1安装-cuda-和-cudnn) - [步骤2:安装 Ten
原创 2024-02-10 07:36:02
59阅读
*本文只适用于win10系统 nvidia显卡*pytorch是基于python的一个深度学习框架,个人觉得比tensorflow好用,绝对不是因为我电脑用tensorflow一直有bug的原因:)使用gpu进行并行计算会比cpu更快(我也不知道为什么),但是在网络较小的时候据说优势也不是很明显。第一步 安装python点击downloads然后在里面选择windows系统,红
Parallel Programming 是一门CS系的课程,主要讲授如何针对单机多CPU内核(真*多线程)以及computer cluster 编程,以充分利用计算资源,提高程序性能。一般都会以MPI为例。水平上延展一点,还包括对GPU编程(一般都讲CUDA)。垂直上延展,就是distributed programming 分布式编程,一般会讲Hadoop和Spark。主要应用领域包括科学计算,
目录前言一、Pytorch多GPU并行训练的两种方式1、DataParallel(DP)2、DistributedDataParallel(DDP)二、查看显卡资源&将数据放入GPU中1.查看显卡资源2、将数据放到GPU上三、 使用DataParallel进行多GPU训练1、导入库2、声明GPU3、定义网络4、定义网络参数最重要的!!!在这里把模型放到GPU里!!! 总结前言&n
多处理器级别:在更低层次上,应用程序应该最大化多处理器内各个功能单元之间的并行执行;如“硬件多线程”中所述,GPU多处理器依赖于线程级并行性来最大限度地利用其功能单元。因此利用率与驻留经线的数量直接相关。在每个指令发布时间,一个warp调度器选择一个准备好执行下一个指令的warp(如果有的话),然后发送指令给warp的活动线程。一个warp准备好执行下一条指令需要的时钟周期数称为等待时间,当所有的
1. 首先需要安装numba(python的CUDA版)conda install numba & conda install cudatoolkit2. 导入numbafrom numba import jit, cuda3. 以我的一个机器学习学习作业为例, 比较GPU与不带GPU的运行速度差异, 只需要在定义的函数前面加上 @jit 即可,#%%deine functions fro
转载 2023-09-06 10:30:02
234阅读
多卡训练模式:进行深度学习模型训练的时候,一般使用GPU来进行加速,当训练样本只有百万级别的时候,单卡GPU通常就能满足我们的需求,但是当训练样本量达到上千万,上亿级别之后,单卡训练耗时很长,这个时候通常需要采用多机多卡加速。深度学习多卡训练常见有两种方式,一种是数据并行化(data parallelism),另外一种是模型并行化(model parallelism)。 深度模型训练方
转载 2023-07-12 14:08:24
214阅读
1. nn.DataParalleltorch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0)module -要并行化的模块device_ids (python列表:int或torch.device) - CUDA设备(默认:所有设备)output_device (int或torch.device) -输出的设
GPU并行torch.nn.DataParallel使用非常简单,基本只需添加一行代码就可扩展到多GPU。如果想限制GPU使用,可以设置os.environ['CUDA_VISIBLE_DEVICES'] = "0, 2, 4",注意程序执行时会对显卡进行重新编号,不一定跟实际完全对应。device = torch.device("cuda:0" if torch.cuda.is_availab
# 学习使用 GPU 并行计算的 Python 指南 在深度学习、图形处理和大规模计算任务中,GPU(图形处理单元)提供了强大的并行计算能力。对于初学者来说,利用 GPU 进行并行计算可能有些复杂,下面我们将通过一个简单的流程指南帮助你逐步理解并实现 GPU 并行计算。 ## 整体流程 以下是使用 GPU 并行计算 Python 的基本步骤: | 步骤编号 | 步骤描述
原创 7月前
69阅读
1.前言并行计算,是相对于串行计算来说的。它是一种一次可执行多个指令的算法,目的是提高计算速度,及通过扩大问题求解规模,解决大型而复杂的计算问题。在当下,CPU速度提升遇到一定的瓶颈,而GPU速度很高,也在不断的去帮CPU承担更多的计算。GPU的更新换代也非常快,成为可以更好提高我们电脑性能,运行速率的。2.结构 从上图结构我们可以看出,CPU的计算单元(ALU)较复杂,但是个数较少;GPU的计算
随着GPU的可编程性不断增强,GPU的应用能力已经远远超出了图形渲染任务,利用GPU完成通用计算的研究逐渐活跃起来,将GPU用于图形渲染以外领域的计算成为GPGPU(General Purpose computing on graphics processing units,基于GPU的通用计算)。而与此同时CPU则遇到了一些障碍,CPU为了追求通用性,将其中大部分晶体管主要用于构建控制电路(比如
转载 2024-03-18 09:16:12
120阅读
  • 1
  • 2
  • 3
  • 4
  • 5