目录在了解什么是cuda之前,需要先知道什么是gpu;OK,那么GPU有哪些特性呢?OK,那么什么是CUDA呢?那这里为什是异构计算呢?最后让我们用一个CUDA C的hello world来结束这篇blog。在了解什么是cuda之前,需要先知道什么是gpu; GPU这个概念是由Nvidia公司于1999年提出的。GPU是显卡上的一块芯片,就像CPU是主板上的一块芯片。那么1999年之前显
# 学习使用 GPU 并行计算Python 指南 在深度学习、图形处理和大规模计算任务中,GPU(图形处理单元)提供了强大的并行计算能力。对于初学者来说,利用 GPU 进行并行计算可能有些复杂,下面我们将通过一个简单的流程指南帮助你逐步理解并实现 GPU 并行计算。 ## 整体流程 以下是使用 GPU 并行计算 Python 的基本步骤: | 步骤编号 | 步骤描述
原创 7月前
69阅读
计算机科学的领域中,GPU并行计算成为了提升计算效率的重要工具。利用GPU的强大并行处理能力,可以加速许多计算密集型任务,尤其是在机器学习、图形处理和科学计算等领域。在这篇博文中,我们将深入探讨如何使用Python进行GPU并行计算,涵盖技术原理、架构解析、源码分析、应用场景和案例分析等多个方面。 ### 背景描述 随着数据规模的不断扩大和复杂性的增加,传统的CPU计算逐渐显示出不足之处。尤
最近在学一门课,叫做“C++与并行计算”。要用到多CPU(进程)并行的原理,实现语言是C++的MPI接口。联想到上学期用到CUDA C/C++来做并行计算,就对这两门语言做一个总结,分享下自己关于并行计算的认识。1 并行计算的基本原理并行计算一般有两个维度,一个是指令(Instruction)或程序(Program),另一个是数据(Data)。这样,就可以归纳出各种并行模式(S代表Single,M
streaming processor(sp): 最基本的处理单元,streaming processor 最后具体的指令和任务都是在sp上处理的。GPU进行并行计算,也就是很多个sp同时做处理。现在SP的术语已经有点弱化了,而是直接使用thread来代替。一个SP对应一个thread。Warp:warp是SM调度和执行的基础概念,同时也是一个硬件概念,注意到Warp实际上是一个和硬件相关的概念,
转载 2023-11-02 08:46:43
213阅读
一、多张gpu的卡上使用keras有多张gpu卡时,推荐使用tensorflow 作为后端。使用多张gpu运行model,可以分为两种情况,一是数据并行,二是设备并行。二、数据并行数据并行将目标模型在多个设备上各复制一份,并使用每个设备上的复制品处理整个数据集的不同部分数据。利用multi_gpu_model实现keras.utils.multi_gpu_model(model, gpus=Non
转载 2023-09-11 21:39:52
0阅读
计算机的并行处理技术概括起来主要有以下三种形式:1.时间并行  时间并行指时间重叠,在并行性概念中引入时间因素,让多个处理过程在时间上相互错开,轮流重叠地使用同一套硬件设备的各个部分,以加快硬件周转而赢得速度。  时间并行性概念的实现方式就是采用流水处理部件。这是一种非常经济而实用的并行技术,能保证计算机系统具有较高的性能价格比。目前的高性能微型机几乎无一例外地使用了流水技术。2.空间并行  空
    考察GPU计算的前景,与推广思路。我们来思考一下高性能计算的商业化应用。也就是哪里需要用到高性能计算。即我们的市场究竟多大。    科研工作——院校、企业,再有就是计算密集型服务。院校上讲,由于CUDA的学习周期较长,相对于其他并行方法如MPI,openMP。因为它的cache小,存储和调用方式对其优化效果有决定性影响。学生需要熟悉更多内容才可进行实
转载 2023-07-24 06:53:39
133阅读
并行计算(二)——CUDA一、简介CUDA是NVIDIA提供的一种通用的并行计算平台和编程模型,使用CUDA可以像在CPU上一样使用GPU进行编程。CUDA要介绍的话东西实在太多了,而且GPU的工作原理和CPU尽管是有些相似的,但是实际使用的思路和CPU却可能完全不同,这里也只能简单讲一点。CUDA C编程和普通C语言也没有什么太多的不同,由于CPU和GPU使用的二进制指令不同,因此使用CUDA
转载 2024-06-13 09:35:34
296阅读
摘要:针对像素级图像处理算法并行化程度高的特点,利用GPU并行流处理特性和可编程性,提出了基于GPU的数字图像并行化处理方法,并对其基本执行流程和其中的关键技术问题:数据加载,结果反馈、保存等进行了详细论述。最后通过图像的卷积运算验证了GPU并行处理能力。关键词:GPU;片元程序;Cg;并行处理GPU并行化处理GPU)是目前计算机上普遍采用的图形图像处理专用器件,具有单指令流多数据流(SIMD
转载 2023-10-12 05:55:49
13阅读
本文从使用 GPU 编程技术的角度来了解计算并行实现的方法思路。 前言  本文从使用 GPU 编程技术的角度来了解计算并行实现的方法思路。并行计算中需要考虑的三个重要问题       1. 同步问题       在操作系统原理的相关
上篇中我们用DirectX Compute Shader在显卡上编写了一个并行算法来计算好看的曼德勃罗特集迭代数图形。那么使用显卡进行通用计算到底有多少优势呢?我们本次就来比较一番。首先我们在CPU上也实现该算法。为了方便起见我们设计了一个类:class CPUCalc { private: int m_stride; int m_width; int m_height;
主要参考博文:应用特点:GPU并行吞吐量大,适合大数据并行处理;CPU适合逻辑处理和串行计算,适合多任务并行处理;GPU工作模式 1)CPU 具有独立的内存和寄存器,GPU也具有独立的显存和寄存器。CPU作为主控制器,CPU和 GPU 协同处理任务,GPU主要处理可以高度并行的数据处理任务,CPU则负责逻辑处理和串行计算相关任务。2)GPU上的程序被称为内核函数,也叫kernel。kernel是并
转载 2023-09-20 06:58:11
266阅读
GPU并行计算OpenCL(1)——helloworld随着现在GPU越来越强大,我们看论文的时候经常听到GPU加速的某某某算法,但是到底如何进行加速呢?CUDA可能大家更加熟悉(奈何电脑是MAC),这里介绍就OpenCL。OpenCL(Open Computing Langugae)是第一个面向异构系统(此系统中可由CPU,GPU或其它类型的处理器架构组成)的并行编程的开放式标准。它是跨平台的。
转载 2024-04-30 17:19:19
81阅读
随着GPU的可编程性不断增强,GPU的应用能力已经远远超出了图形渲染任务,利用GPU完成通用计算的研究逐渐活跃起来,将GPU用于图形渲染以外领域的计算成为GPGPU(General Purpose computing on graphics processing units,基于GPU的通用计算)。而与此同时CPU则遇到了一些障碍,CPU为了追求通用性,将其中大部分晶体管主要用于构建控制电路(比如
转载 2024-03-18 09:16:12
120阅读
# 教学:GPU并行计算架构实现 ## 1. 流程概述 首先我们来看一下实现GPU并行计算架构的整个流程,我们可以用一个表格展示出来: | 步骤 | 内容 | | --- | --- | | 1 | 安装CUDA工具包 | | 2 | 编写CUDA代码 | | 3 | 编译CUDA代码 | | 4 | 运行CUDA程序 | ## 2. 详细教学 ### 步骤1:安装CUDA工具包 首先,你需
原创 2024-06-07 05:38:00
83阅读
CUDA全局内存的合并访问(个人理解)每个warp去访问全局内存,会有400-600个时钟周期的内存延迟,这个代价很昂贵,所以为了减少访问全局内存的指令次数,我们将满足字节大小和对齐要求的warp合并起来访问全局内存,从而减少对全局内存的访问次数,提高GPU性能。关于warp指令基础知识1)什么是warp?一个线程warp包括32条线程(我的电脑是1个warp包括32条线程)。它位于多处理器中。2
目录前言一、Pytorch多GPU并行训练的两种方式1、DataParallel(DP)2、DistributedDataParallel(DDP)二、查看显卡资源&将数据放入GPU中1.查看显卡资源2、将数据放到GPU上三、 使用DataParallel进行多GPU训练1、导入库2、声明GPU3、定义网络4、定义网络参数最重要的!!!在这里把模型放到GPU里!!! 总结前言&n
最近在了解GPU架构这方面的内容,由于资料零零散散,所以准备写两篇博客整理一下。GPU的架构复杂无比,这两篇文章也是从宏观的层面去一窥GPU的工作原理罢了 GPU根据厂商的不同,显卡型号的不同,GPU的架构也有差别,但是大体的设计基本相同,原理的部分也是相通的。下面我们就以NVIDIA的Fermi架构为蓝本,从降低延迟的角度,来讲解一下GPU到底是如何利用数据的并行处理来提升性能的。有关
转载 2024-04-30 19:26:10
86阅读
一、背景虽然目前处理器核心数已经发展到很大数目,但是按任务并发处理并不能完全充分的利用处理器资源,因为一般的应用程序没有那么多的并发处理任务。基于这种现状,考虑把一个任务拆分成多个单元,每个单元分别得到执行,最后合并每个单元的结果。Fork/Join框架是JAVA7提供的一个用于并行执行任务的框架,是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架。它非常类似于HADO
  • 1
  • 2
  • 3
  • 4
  • 5