今天看到一篇大数据的文章,分析了Python作为机器学习语言的优势,其中提到在2010年python的Theano库在CPU上运行时,其速度是Numpy的1.8倍, 而在GPU上运行时,其速度是Numpy的11倍。 于是乎开始查阅GPU和Theano的相关概念。 以下是Nvidia官网对GPU的文字介绍,视频尤其直观。 GPU 加速的计算是利用一颗图形处理器 (GPU) 以
转载
2023-07-14 18:54:09
215阅读
在这篇博文中,我将分享如何通过“python pytorch gpu”来高效实现深度学习模型的训练和推理。我们将从环境准备开始,逐步解决具体问题,直到优化和排错,确保每一步都能顺利进行。
## 环境准备
为了使用 PyTorch 并充分利用 GPU 进行计算,首先需要确保软硬件环境满足一定的要求。
### 硬件资源评估
在这里我们将不同的硬件资源进行评估,并将其分为四个象限,方便用户更直观地
GPU版Pytorch最近在搞深度学习,需要用到GPU跑模型了,配置GPU版本的Pytorch是真的烦,而且每个人遇到的问题不一样,网上很多教程也良莠不齐,这里我将自己总结的最简便的配置Pytorch方法分享给大家。1.下载安装CUDA首先需要查看当前电脑显卡CUDA版本: 右键点击图标进入控制面板–>帮助–>系统信息–>组件,出现如下界面,比如我的就是CUDA 10.1版本:
转载
2023-09-05 11:13:21
133阅读
# Python 安装 PyTorch GPU
PyTorch 是一个基于 Python 的科学计算库,提供了丰富的工具和函数,用于构建和训练深度神经网络。为了充分利用计算资源,我们可以将 PyTorch 配置为使用 GPU 进行计算。本文将介绍如何在 Python 环境中安装和配置 PyTorch GPU,并提供相关代码示例。
## 安装 PyTorch
在开始之前,确保已经安装了适当版本
原创
2023-10-24 18:54:02
76阅读
# 查看 Python PyTorch GPU
在深度学习和机器学习的领域中,PyTorch 是一个非常流行的开源框架,因其灵活性和易于使用而受到广泛欢迎。在使用 PyTorch 进行训练时,利用 GPU 可以显著提高计算速度。本文将介绍如何在 PyTorch 中查看和使用 GPU,包括相关代码示例和状态图。
## 1. 什么是 GPU?
GPU(Graphics Processing Un
觉得有收获,决定把笔记分享出来,希望对你会有一点点帮助首先要创建环境,我试的版本是python = 3.6命令 conda create --name yourEnv python=3.6,我觉得应该是没所谓,3.7、3.8、3.9应该都可以然后,这里面会有一个坑!!!创建环境完成后,不要着急安装pytorch!!!去pip list看一下自己的环境中是不是已经装了pytorch 的cpu版本!!
转载
2023-07-24 23:48:53
421阅读
step0.安装基本要求有nvidia的独立显卡显卡算力超过3.1即可安装CUDA,在这里查询显卡算力step1.查看显卡驱动右键桌面开始按钮,如下图所示:找到设备管理器在设备管理器里面找到显示适配器找到自己的显卡右键点击,然后点击更新驱动程序然后选择自动搜索更新的驱动程序软件step2. 安装CUDA选择合适版本的CUDA(下面安装的是CUDA10.2)GeForce RTX 30系显卡只支持C
转载
2023-07-24 07:14:43
196阅读
目录一、创建虚拟环境二、下载安装包三、遇到的坑前言 文章主要介绍安装GPU版本的Pytorch,自己在安装种也遇到了不少坑,在这里一一例举。前提是安装好Anaconda和Pycharm和CUDA。不推荐通过官网获取命令直接安装,如果不换源,下载速度慢,我换了清华源后,下载的CUDA版本的,清华源由于没有CUDA版本,每次都会自动装CPU版本,若
转载
2023-09-20 06:57:21
198阅读
目录一、安装显卡驱动1、查看显卡驱动型号2、下载显卡驱动3、查看GPU状态二、安装Visual Studio 2019三、安装CUDA1、下载对应版本的CUDA2、安装下载好的CUDA3、设置环境变量 四、安装cudnn五、安装anaconda六、安装PyTorch1、创建虚拟环境2、激活并进入虚拟环境3、安装PyTorch4、验证PyTorch是否安装成功注意:30系列的的显卡暂时不支
转载
2023-07-14 19:03:58
182阅读
1、目前主流方法:.to(device)方法 (推荐)import torch
import time
#1.通常用法
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
data = data.to(device)
model = model.to(device)
'''
1.先创建device
转载
2023-08-31 10:09:45
4610阅读
4.jpeg
CDA数据分析师 出品相信大家在做一些算法经常会被庞大的数据量所造成的超多计算量需要的时间而折磨的痛苦不已,接下来我们围绕四个方法来帮助大家加快一下Python的计算时间,减少大家在算法上的等待时间。以下给大家讲解关于数据并行化这方面的内容。1.介绍随着时间和处理器计算能力的增长,数据呈指数级增长,我们需要找到有效地处理数据的方法。那我们应
转载
2023-11-24 21:15:30
97阅读
PyTorch Performance Tuning Guide(三)针对GPU的优化方法3.1 启用 cuDNN auto-tuner3.2 避免不必要的 CPU-GPU 同步3.3 直接在目标设备上创建张量3.4 使用混合精度和 AMP3.5 在输入长度可变的情况下预分配内存 原本是应该先介绍第二部分针对 CPU 的优化方法,由于其中的方法自己都没有实践过,感觉绝大部分人也用不上,所以暂时
转载
2024-06-08 16:57:46
45阅读
torch.cuda.is_available() cuda是否可用; torch.cuda.device_count() 返回gpu数量; torch.cuda.get_device_name(0) 返回gpu名字,设备索引默认从0开始; torch.cuda.current_device(); cuda是nvidia gpu的编程接口,opencl是amd gpu的编程接口...
原创
2021-08-12 22:17:16
413阅读
本文记录了电脑环境基于pytorch安装配置GPU的过程。目录:一、查看驱动程序二、安装Pytorch+torchvision+torchaudio三、安装CUDA四、加入CUDNN库文件五、配置环境变量环境:win11+NVIDIA RTX4500+anaconda2.4.0+pycharm2022一、查看驱动程序版本1、nvidia 控制面板 查看【帮助】-》【系统信息】-》组件 CUDA 1
转载
2023-08-01 18:00:37
1268阅读
上一期我们介绍了CUDA下载安装以及其总结,这一期教大家如何在Anaconda中使用CUDA来进行加速、神经网络依赖cuDNN的下载安装,以及下载和安装Pytorch-GPU安装包的三种方式(conda、pip、轮子)。 上一期我们介绍了CUDA下载和安装以及其总结,这一期教大家如何在VS和Anaconda
还未下载安装 CUDA 和 Anaconda,点击后面的 1,2
转载
2024-08-30 14:10:02
0阅读
报错情况报错一在任意python文件下运行这几行命令 1. print("是否可用:", torch.cuda.is_available()) # 查看GPU是否可用
2. print("GPU数量:", torch.cuda.device_count()) # 查看GPU数量
3. print("torch方法查看CUDA版本:", torch.version.cuda) # torch方法查
pytorch的GPU环境配置真的是相当简单啊,想之前受tf环境配置折磨的日子,简直要发疯。接下来是具体操作流程:查看显卡信息。在cmd框框中输入dxdiag 即可。注:貌似只支持Nvidia 的独显。进入cuda官网进行下载,各项选择如下图,最后点击Download,安装时按照默认安装。 安装完之后,可进行命令行窗口,输入nvidia-smi,查看cuda是否成功安装,即查看cuda版
转载
2023-11-18 22:52:28
102阅读
在线gpu加速服务器ATUODL,与pycharm连接使用教程ATUODLpycharm连接 最近做yolo系列在visdrone上的目标检测,对算力有一定的要求。所以同学推荐了一款超级实用超级便宜的在线GPU加速服务器。 ATUODL话不多说,上连接https://www.autodl.com/home 1.租用服务器。选择你需要的型号。然后创建。 创建后会在控制台,我的实例中显示: 开机:
转载
2024-02-04 20:26:49
13阅读
文章目录前言一、安装CUDA1、检查电脑是否支持CUDA2、下载并安装CUDA3、下载并安装cuDNN二、安装Pytorch1、安装Anaconda2、切换清华镜像源3、创建环境并激活4、输入Pytorch安装命令5、测试三、在Pycharm上使用搭建好的环境参考文章 前言本人纯python小白,第一次使用Pycharm、第一次使用GPU版Pytorch。因为在环境搭建的过程中踩过不少坑,所以以
转载
2023-08-05 21:23:05
1045阅读
在windows下用anaconda虚拟环境安装pytorch gpu版 成功! 文章目录0. 用pip安装1. 安装准备2. 安装指令3. 查看、提升cuda版本3.1 判断显卡是否支持cuda3.2 查看 cuda版本3.3 提高cuda版本3.4 查看驱动版本4. 离线下载torch安装包4.1 离线下载安装包4.2 修改urls.txt文件5. 安装及检查 接下来介绍安装过程。推荐全部看完
转载
2023-08-16 17:31:37
401阅读