粒子群优化SVM其中代码部分经过测试,实测可用步骤讲解1、粒子群是优化的SVM的c和g,由于SVM中的c和g难以选择最优的,故选择PSO来优化,寻找最优的粒子点来作为SVM的c和g。 2、从随机解出发,通过迭代寻找最优解,通过适应度来评价解的质量(适应度函数中打印优化的准确度)。 3、PSO初始化为一群随机粒子(随机解),然后通过迭代找到最优解。所有的粒子具有位置(particle_positio
转载
2024-01-30 00:16:16
219阅读
1、摘要本文主要讲解:PSO粒子群优化-LSTM-优化神经网络神经元个数dropout和batch_size,目标为对沪深300价格进行预测 主要思路:PSO Parameters :粒子数量、搜索维度、所有粒子的位置和速度、个体经历的最佳位置和全局最佳位置、每个个体的历史最佳适应值LSTM Parameters 神经网络第一层神经元个数、神经网络第二层神经元个数、dropout比率、batch_
转载
2023-11-01 19:04:01
349阅读
# PSO优化LSTM在PyTorch中的应用
## 引言
长短期记忆网络(LSTM)是一种回归神经网络,广泛应用于时间序列预测、自然语言处理等领域。然而,LSTM的性能往往依赖于超参数设置,而超参数优化是深度学习中的一项重要而挑战性的任务。粒子群优化(PSO)是一种基于群体智能的优化算法,能够有效地为LSTM的超参数搜索提供支持。这篇文章将介绍如何在PyTorch中实现PSO优化LSTM的过
????欢迎来到本博客❤️❤️???博主优势:???博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。?1 概述随着社会的高速发展,精准的短期电力负荷预测越来越重要。短期电力负荷的准确预测不仅对电网规划和电力系统安全经济运行有不可替代的作用,而且对减少发电成本、提高用电质量和市场规划等方面也有重要作用。短期电力负荷预测是指对未来几小时或几天的负荷进行预测。电力负荷的
????欢迎来到本博客❤️❤️???博主优势:???博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。?1 概述随着社会的高速发展,精准的短期电力负荷预测越来越重要。短期电力负荷的准确预测不仅对电网规划和电力系统安全经济运行有不可替代的作用,而且对减少发电成本、提高用电质量和市场规划等方面也有重要作用。短期电力负荷预测是指对未来几小时或几天的负荷进行预测。电力负荷的
????欢迎来到本博客❤️❤️???博主优势:???博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。?1 概述随着社会的高速发展,精准的短期电力负荷预测越来越重要。短期电力负荷的准确预测不仅对电网规划和电力系统安全经济运行有不可替代的作用,而且对减少发电成本、提高用电质量和市场规划等方面也有重要作用。短期电力负荷预测是指对未来几小时或几天的负荷进行预测。电力负荷的
????欢迎来到本博客❤️❤️???博主优势:???博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。?1 概述随着社会的高速发展,精准的短期电力负荷预测越来越重要。短期电力负荷的准确预测不仅对电网规划和电力系统安全经济运行有不可替代的作用,而且对减少发电成本、提高用电质量和市场规划等方面也有重要作用。短期电力负荷预测是指对未来几小时或几天的负荷进行预测。电力负荷的
????欢迎来到本博客❤️❤️???博主优势:???博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。?1 概述随着社会的高速发展,精准的短期电力负荷预测越来越重要。短期电力负荷的准确预测不仅对电网规划和电力系统安全经济运行有不可替代的作用,而且对减少发电成本、提高用电质量和市场规划等方面也有重要作用。短期电力负荷预测是指对未来几小时或几天的负荷进行预测。电力负荷的
1、摘要本文主要讲解:使用PSO优化GRU-LSTM超参数,神经元个数、学习率、dropout和batch_size 主要思路:建立GRU-LSTM模型定义PSO的参数:最大迭代次数、最大惯性权重、最小惯性权重、粒子数量、所有粒子的位置和速度、个体经历的最佳位置和全局最佳位置、每个个体的历史最佳适应值定义超参数搜索范围计算初始全局最优、全局最优参数、画适应度的图使用PSO找到的最好的超参数来重新训
转载
2023-10-20 19:46:49
221阅读
目录1.算法描述2.matlab算法仿真效果3.MATLAB核心程序4.完整MATLAB1.算法描述 粒子群优化算法(PSO),粒子群中的每一个粒子都代表一个问题的可能解, 通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。 在求解TSP这种整数规划问题的时候, PSO显然与ACO不
转载
2024-04-20 20:06:55
85阅读
这段时间学习Python,调通了基于监督学习的LSTM神经网络预测模型代码,在一般代码的基础上,做了单步和多步通用版的改进。调通的代码附后,供各位大咖指正。 虽然代码调通了,但是发现输出的预测结果均滞后于实际值,更像是对原始数据的拟合而不是预测,想请教一下: &nb
转载
2024-05-08 09:22:48
18阅读
目录一、实验要求二、算法流程三、案例实现及结果完整程序:一、实验要求二、算法流程粒子群算法流程:1、初始化:初始化粒子群;给每个粒子赋予初始位置和速度2、计算适应值:根据适应度函数,计算每个粒子的适应值3、求个体最佳适应值:对每一个粒子,将其当前位置的适应值与其历史最佳位置对应的适应值比较,如果当前位置的适应值更高,则用当前位置更新历史最佳位置4、求群体最佳适应值:对每一个粒子,将其当前位置的适应
转载
2023-09-30 10:01:58
265阅读
????欢迎来到本博客❤️❤️???博主优势:???博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。???本文目录如下:???目录?1 概述1.1 LSTM神经网络算法1.2 PSO算法1.3 PSO-LSTM负荷预测模型?2 运行结果2.1 LSTM2.2 PSO优化2.3 PSO-LSTM2.4 实际值、LSTM、PSO-LSTM比较&nb
转载
2023-09-18 14:50:18
150阅读
# 利用粒子群优化(PSO)优化LSTM在时间序列预测中的应用
在机器学习领域,长短期记忆网络(LSTM)由于其强大的时间序列预测能力被广泛使用。然而,传统的LSTM网络常常需要依赖较多的参数调整,这对实现精确预测是一个不小的挑战。粒子群优化(PSO)是一种高效的全局优化算法,可以用来优化LSTM的超参数,从而提高模型的性能。本文将详细介绍如何使用PSO优化LSTM,并给出具体的Python实现
原创
2024-10-24 03:58:52
388阅读
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进; ⛳️座右铭:行百里者,半于九十。 ⛄一、粒子群算法及LSTM简介1 粒子群算法简介 1.1 粒子群算法的概念** 粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体
文章目录引言一、LSTM网络的机制二、代码实操1.LSTM准备数据集2.构建和训练 LSTM 模型3.出图效果在这里插入图片描述 简介:TPLSO采用群体学习和精英学习。在群体学习阶段,TPLSO具有不同探索和开发潜力的粒子被随机选择三个粒子组成学习组,然后采用竞争机制更新学习组成员。然后对群中的所有粒子进行排序,并挑选出具有更好拟合值的精英粒子,可以保持高度的多样性,避免陷入局部最优。在精英学习阶段,一些具有良好拟合值的精英粒子将粒子聚集到群体中形成新的群体,然后这些精英粒
转载
2024-06-11 18:42:06
153阅读
粒子群优化算法(PSO)Particle Swarm Optimization1、 算法起源粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,
转载
2024-01-11 08:11:51
106阅读
1.优化器的选择自深度学习发展以来,就有很多关于优化器的研究者工作,优化器的目的是为了让损失函数尽可能的小,从而找到合适的参数来完成某项任务。目前业界主要用到的优化器有SGD、RMSProp、Adam、AdaDelt等,其中由于带momentum的SGD优化器广泛应用于学术界和工业界,所以我们发布的模型也大都使用该优化器来实现损失函数的梯度下降。带momentum的SGD优化器有两个劣势,其一是收
转载
2024-07-08 19:49:05
92阅读
# 使用Python实现粒子群优化(PSO)的完整指南
粒子群优化(PSO)是一种群体智能优化算法,广泛应用于函数优化、特征选择等问题。对于刚入行的小白来说,学习和实施PSO可能会觉得棘手,但只要掌握流程和代码实现,就能简单上手。本文将带你逐步实现PSO,并提供每一步需要的代码示例。
## 算法流程
在实现PSO之前,你需要了解PSO的基本流程。下面是PSO算法的主要步骤:
| 步骤