July 3 勉勉强强看完TT July 3梦入少年丛 歌舞匆匆 老僧夜半误鸣钟 惊起西窗眠不得 卷地西风1. Logistic regressionSome basic logicsource: https://www.vebuso.com/2020/02/linear-to-logistic-regression-explained-step-by-
根据回归方法中因变量的个数和回归函数的类型: 特殊的回归方式: 逐步回归回归过程中可以调整变量数的回归方法; Logistic回归:以指数结构函数作为回归模型的回归方法。一、一元回归1.一元线性回归 例题: 近10年来,某市社会商品零售总额与职工工资总额(单位:亿元)的数据,请建立社会零售总额与职工工资总额数据的回归模型。 (1)输入数据,画出散点图 (2)采用最小二乘回归注:相关公式(3)采
转载 2024-03-27 20:01:53
667阅读
Coursera上Andrew Ng的课程堪称经典,课程主要使用的是Octave/MATLAB。平时学习使用python多些,所以尝试着用python来做个课后作业。第三周的课程主要学习了逻辑回归以及逻辑回归的正则化。作业目标:通过两次考试成绩来判断是否可以录取通过?下载课后作业文件,解压缩后可以得到如下文件,自行过滤出第一部分相关文件:ex2.m 分步骤实现逻辑回归代码,之后对应e
时间序列预测(五)—— Prophet模型文章链接(一)数据预处理(二)AR模型(自回归模型)(三)Xgboost模型(四)LSTM模型(五)Prophet模型(自回归模型)模型原理  Prophet模型,是Facebook公司开源的一个专门用于大规模时间序列分析的模型,基于加性模型(Additive Model),利用年月日等的周期性再加上假期影响去拟合非线性的趋势。具体内容可以在这里找到。该模
1.适合阅读人群:知道以下知识点:盒状图、假设检验、逻辑回归的理论、probit的理论、看过回归分析,了解AIC和BIC判别准则、能自己跑R语言程序2.本文目的:用R语言演示一个相对完整的逻辑回归probit回归建模过程,同时让自己复习一遍在学校时学的知识,记载下来,以后经常翻阅。3.本文不涉及的部分:(1)逻辑回归probit回归参数估计的公式推导,在下一篇写;(2)由ROC曲线带来的阈值选
转载 2024-05-03 17:51:08
90阅读
分享内容(2020/06/23)Probabilistic Regression for Visual Tracking视觉跟踪的概率回归这篇论文是Martin Danelljan CVPR2020的最新一个工作,这个系列中几篇论文都是一种架构,即将整个跟踪任务分为位置预测和bbox回归两个问题,模型架构采用的是一种类似Siamese架构。这篇论文主要解决的是位置回归的问题,bbox的回归还是直接
统计术语TAG:教育理论 A acceptance region  接受区域adjusted  校正的allocation  配置、布局alternative hypothesis  备择假设* analysis of variance  方差分析* analysis of covariance  协方差分析ANOCOVA  =Analysis of covariance* ANOVA  =Ana
转载 2024-06-03 15:29:19
136阅读
logistic回归的一些直观理解(1.连接函数 logit probit)  前面写了一些读书笔记是关于用logit回归做二分类问题后的效果评价,基本上已经可以告一段落。然后打算回过头来整理一下logit回归本身的一些思路。很惭愧,我不是统计学出身,当年概率论差点考挂,数理统计也是一门选修课(唯一印象深刻的是老师的口音),所以大概很难从理论上进行严格的阐述,主要还是写一点直观
贵州师范大学计算机实验报告课程名称:  人工智能  班级: 13级计本  实验日期:  2016/4/28      学号:   130702010047    姓名:  陈美     &n
1 引言    最近做一个项目,准备用逻辑回归来把数据压缩到[-1,1],但最后的预测却是和标签类似(或者一样)的预测。也就是说它的predict的结果不是连续的,而是类别,1,2,3,...k。对于predict_proba,这是预测的概率,但概率有很多个,数目为训练集类别(label)的个数。逻辑回归的原理,就是取出最大概率对应的类别。  &
一、问题描述    前面我们讨论了使用线性模型进行回归学习,但是要做分类任务怎么办?只需要找一个单调可微函数将任务分类的真实标记 y 与线性回归模型的预测值联系起来。    考虑二分类任务,其输出应该是 y 属于[0, 1]。而线性回归模型产生的预测值 z = wx+b是实值。于是我们考虑将 z 转换到 0 / 1值。二、对数几率回归&n
转载 2024-03-21 10:06:02
277阅读
A acceptance region  接受区域 adjusted  校正的 allocation  配置、布局 alternative hypothesis  备择假设 * analysis of variance  方差分析 * analysis of covariance  协方差分析 ANOCOVA  =Analysis of covariance * ANOVA  =Analysis
> Photo by Thought Catalog on Unsplash 暂时忘记深度学习和神经网络。随着越来越多的人开始进入数据科学领域,我认为重要的是不要忘记这一切的基础。统计。如果您不熟悉分析领域,那就可以了! 我们都是从某个地方开始的!但是,重要的是要意识到我将在本文中分享的机器学习模型假设的存在。很幸运,我在大学时代就已经研究了所有这些概念,所以我认为回到基础知识并撰写
probit回归:即概率单位回归,主要用来测试分析刺激强度与反应比例之间的关系,例如对于指定数量的病人,分析他们的给药剂量与治愈比例之间的关系,此方法运用的典型例子是分析杀虫剂浓度和杀死害虫数量之间的关系,并据此判定什么样的杀虫剂浓度是最佳的。在药学研究中,此方法常用于半数效应分析(Median effect dose),寻求达到50%输出响应的输入刺激量。数学原理 同logistic回归分析中的
【代谢组学】4.生物标志物分析概念生物标志物,即传说中的biomarker,是一类可测量的,用来表征疾病状态的物质,通常用于表征:疾病的状态(是否为某种疾病/某种亚型);药物敏感性,用于用药指导;生理状态监测。类型预后指标 预测疾病的预后效果(独立于治疗),如AB1-42可用于诊断老年痴呆预后。预测型标志物 预测疾病类型/针对某种治疗的响应,如HER2、EGFR、 K-RAS等突变可用于预测肿瘤发
Preparation预装好caffe on windows,并编译成功MATLAB接口。 通过caffe进行回归分析通过caffe进行回归分析,在实验上主要分成HDF5数据准备、网络设计、训练、测试。该实验已经有网友做过,可以参考:或者查看转载的副本()。但不同的是,本文在实验中某些必要的环节均通过MATLAB实现,而不是Python。下文仅对不同的内容进行介绍。 通过M
1. 逻辑回归与线性回归的联系与区别2. 逻辑回归的原理3. 逻辑回归损失函数推导及优化4. 正则化与模型评估指标5. 逻辑回归的优缺点6. 样本不均衡问题解决办法7. sklearn方法使用附:代码(如有错误,感谢指出!)1.逻辑回归与线性回归的联系与区别联系:将线性回归输出的标记y的对数作为线性模型逼近的目标,即就是“对数线性回归”或“逻辑回归”。其在形式上仍是线性回归,但其是在求取输入空间到
Logistic回归模型Logistich回归模型也被成为广义线性回归模型。 它是将线性回归模型的预测值经过非线性的Logit函数转换为[0,1]之间的概率值。 研究得是分类问题,跟之前的线性回归、岭回归、Lasso回归不同。混淆矩阵实际值 预 0 1 测 0 A B A+B 值 1 C D C+D A+C B+D -----------------
转载 2023-12-28 15:55:45
152阅读
引言LR回归,虽然这个算法从名字上来看,是回归算法,但其实际上是一个分类算法,学术界也叫它logit regression, maximum-entropy classification (MaxEnt)或者是the log-linear classifier。在机器学习算法中,有几十种分类器,LR回归是其中最常用的一个。logit和logistic模型的区别:二者的根本区别在于广义化线性模型中的
 在我们遇到回归问题时,例如前面提到的线性回归,我们总是选择最小而成作为代价函数,形式如下:这个时候,我们可能就会有疑问了,我们为什么要这样来选择代价函数呢?一种解释是使我们的预测值和我们训练样本的真实值之间的距离最小,下面我们从概率的角度来进行解释。 首先假设输入变量和目标变量满足下面的等式ε(i)指的是误差,表示我们在建模过程中没有考虑到的,但是它对预测的结果又有影响。它是
  • 1
  • 2
  • 3
  • 4
  • 5