皮肤检测与抠图皮肤检测的方法很多,这里写的是最简单的方法,感兴趣的同学可以自己加上椭圆检测,膨胀腐蚀等,使得检测与抠图更加精确。github上许多人脸识别的算法,可以多学习那些。HSV颜色空间hsv涉及心理学的颜色知识,比rgb检测具有更好的分类效果python 代码def get_skin_hsv(img) hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2H
1.肤色检测  肤色检测技术利用了计算机对人体皮肤像素的分析过程,随着人脸检测技术,表情识别及手势识别等技术的快速发展,肤色应用领域日趋增多。肤色检测技术常用的方法有基于颜色空间、光谱特征以及肤色反射模型等方法,这些方法的主要步骤先进行颜色空间变换,然后再建立肤色模型。肤色检测中颜色空间有RGB、YCrCb、HSV和Lab等,通常在处理的时候是将RGB颜色空间变换成相应的颜色空间,对某种类型的图像
先贴代码 1. void cvSkinSegment(IplImage* img, IplImage* mask){ 2. CvSize imageSize = cvSize(img->width, img->height); 3. IplImage *imgY = cvCreateImage(imageSize, IPL_DEPTH_8U,
//第一种:RGB c
原创 2022-04-11 13:40:43
326阅读
//第一种:RGB color space 【效果挺好】// skin region location using rgb limitationvoid ImageSkin::ImageSkinRGB(const Mat& rgb, Mat& _dst){ assert(rgb.channels() == 3 && _dst.channels() == 3); static
原创 2021-12-22 11:20:26
438阅读
你今天真好看app是一款专为广大女性用户设计的美容护肤服务软件。不用美容院,直接测试,从你的肤色、痘痘、毛孔、脸色等方面为你智能分析,检测出你的皮肤情况,护肤最真诚的伴侣,附带详细的护肤常识和护肤推荐。你今天真好看app使用教程1、下载打开软件2、点击中间的拍照3、开始分析即可4、稍等两分钟,就会有一个肤质报告了5、拍一拍就能测肤质!我的得分是89,超过全国83%的人。你呢?你今天真好看app功能
1. 什么是斑点斑点通常是指与周围有着颜色和灰度差别的区域。在实际地图中,往往存在着大量这样的斑点,如一颗树是一个斑点,一块草地是一个斑点,一栋房子也可以是一个斑点。由于斑点代表的是一个区域,相比单纯的角点,它的稳定性要好,抗噪声能力要强,所以它在图像配准上扮演了很重要的角色。同时有时图像中的斑点也是我们关心的区域,比如在医学与生物领域,我们需要从一些X光照片或细胞显微照片中提取一些具有特殊意义的
基于Python--opencv的人脸识别 环境配置安装python3.7 配置pip 下载环境安装第三方包# pip install 第三方包 -i https://pypi.tuna.tsinghua.edu.cn/simple 使用清华镜像源加快速度 # pillow的安装,输入: pip install pillow -i https://pypi.tuna.tsinghua.edu.c
一 人脸识别 1 EigenFace 介绍 EigenFace 在人脸识别历史上应该是具有里程碑式意义的,其被认为是第一种有效的人脸识别 算法。1987 年 Sirovich and Kirby 为了减少人脸图像的表示采用了 PCA(主成分分析)的方法进行降维,1991 年 Matthew Turk 和 Alex Pentland 首次将 PCA 应用于人脸识别,即将原始图像投影到特征空间,得到一
今天目的是爬取所有英雄皮肤在爬取所有之前,先完成一张皮肤的爬取打开anacond调出编译器Jupyter Notebook打开王者荣耀官网下拉找到位于网页右边的英雄/皮肤 点击【+更多】进入英雄皮肤页面按键盘F12调出网页代码点击进入调出页的【Network】(这里是谷歌浏览器,其他浏览器可能显示为’网络‘)   刷新网页 重新接收所有网页数据(不要关闭调出
3.1 各彩色空间中肤色[1]的聚类情况    好的肤色模型要求选择一个恰当的彩色空间,在此空间中肤色能团簇、聚合在一起,并且与非肤色的重叠部分要尽可能少。通过各色度空间中肤色聚类的结果比较发现,肤色在各空间中的聚类情况如下:在RGB彩色空间中,肤色与非肤色的重叠部分较多。因此RGB空间不适合构造肤色模型;在rgb彩色空间中的分布情况(用r,g表征)。由于色饱
在对特定物体做初步检测时,颜色信息非常有用。例如辅助驾驶程序中的路标检测功能,就要凭借标准路标的颜色快速识别可能是路标的信息。另一个例子是肤色检测检测到的皮肤区域可作为图像中有人存在的标志。手势识别就经常使用肤色检测确定手的位置。 通常来说,为了用颜色来检测目标,首先需要收集一个存储有大量图像样本的数据库,每个样本包含从不同观察条件下捕捉到的目标,作为定义分类器的参数。你还需要选择一种用于分类的
由 算法出现的顺序并不代表算法的优越性,仅仅是作者随机排布的而已。 2、
转载 2013-08-17 22:53:00
131阅读
2评论
本文涉及的很多算法,在网络上也有不少同类型的文章,但是肯定的一点就是,很多都是不配代码的,或者所附带的代码都是象征性的,速度慢,不优雅,不具有实用价值,本文努力解决这些问题。
原创 2021-08-23 17:18:01
383阅读
在日常生活中我们表示颜色的时候都喜欢用RGB模型进行表示,RGB分别代表了三原色:红色Red, 绿色Green,蓝色Blue。但是当我们想要从图片中选取某种颜色的时候,比如说红色,用RGB该怎么做?很难啊。所以当涉及到颜色的时候我们通常都会将图片转化到hsv空间进行表示。这个模型中颜色的参数分别是:色调(H),饱和度(S),明度(V)。那么该如何选择我们需要的颜色呢?比如说红色,是否就只需要选择一
基于RGB颜色空间的简单阈值肤色识别在human skin color clustering for face detection一文中提出如下简单的判别算式:R>95 And
原创 2022-04-19 11:36:32
425阅读
AI皮肤检测App开发能够为用户对自己的皮肤的监测提供数据的支持,通过App对用户的脸部皮肤进行拍照取样,然后根据人工智能的识别、监测用户的皮肤,生成结果。这一系列的操作,都是通过AI皮肤检测App功能的实现。让用户清晰的了解到自己的皮肤的状态问题,给用户提出合理的肌肤护肤的方案。那这样的AI皮肤检测App如何检测用户的皮肤的问题呢?拍照取样首先对用户的皮肤进行拍照取样,拍照的时候要保证用户没有进
用python进行人脸识别(五)基本原理代码 OpenCV的基本操作已经学会了,那么开始尝试进行人脸识别吧。 基本原理人类区分不同的人脸是根据鼻子、醉、眼睛、眉毛、肤色等等因素,这些因素的大小、间距、形状的不同,构成了形形色色的人脸,也构成了这个大千世界。人脸识别的前期就是按照这个思路进行,即几何特征法。但后来发现这玩应儿并不好用,发展出了许许多多的识别方法。如果人眼是根据鼻子、嘴巴这些组织的
# 实现“图检测 机器学习”教程 ## 一、整体流程 首先我们来看一下整个“图检测 机器学习”过程的流程,可以用如下表格展示: | 步骤 | 操作 | | ---- | ---- | | 1 | 数据收集和预处理 | | 2 | 特征提取和选择 | | 3 | 模型选择和训练 | | 4 | 模型评估和优化 | | 5 | 模型应用和部署 | ## 二、具体操作步骤 ### 1. 数
原创 4月前
35阅读
由于ofxOpencv里的ofxCVColorImage是RGB格式的,没想到调用getCvImage()函数得到的IplImage居然也是RGB格式,结果害得我一开始肤色检测的结果十分诡异。。。作者也够懒的,这么简单居然也不做个转换!这个就是调换RB通道的代码:void testApp::cvRGB_or_BGR(IplImage* src_image, IplImage* dst_im
原创 2021-12-22 11:40:49
164阅读
  • 1
  • 2
  • 3
  • 4
  • 5