文章目录一、颜色通道1.通道分离:split()2.通道合并merge()二、效果三、访问像素1.单位2.方法(1)at动态地址计算①i单下标②i、j行列双下标(2)迭代器(3)指针 一、颜色通道1.通道分离:split()原型void split(
InputArray m,
OutputArrayOfArrays mv;
)参数m:要进行分离的图像mv:输出的通道容器。一般是vector&
转载
2024-03-09 23:22:47
281阅读
矩是描述图像特征的算子,被广泛用于图像检索和识别、图像匹配、图像重建、图像压缩以及运动图像序列分析等领域。本节中将介绍几何矩与Hu矩的计算方法以及应用Hu矩实现图像轮廓的匹配。几何矩与中心矩图像几何矩的计算方式如式(7.8)所示:其中是像素处的像素值。当x和y同时取值0时称为零阶矩,零阶矩可以用于计算某个形状的质心,当x和y分别取值0和1时被称为一阶矩,以此类推。图像质心
转载
2023-12-23 16:33:14
113阅读
OpenCV数字图像处理之ROI区域的提取 利用mask(掩模)技术提取纯色背景图像ROI区域中的人和物,并将提取出来的人或物添加在其他图像上。1、实现原理 先通过cv.cvtColor()函数,将原RGB彩色图像转换为hsv色彩空间的图像,然后通过cv.inRange()函数获得ROI区域的Mask,最后利用cv.bitwise()函数提取得到ROI区域。2、使用的函数简述 (1) cv.cvt
转载
2023-12-09 15:27:44
266阅读
一、cv2.getPerspectiveTransformcv2.getPerspectiveTransform(src, dst) → retvalsrc:源图像中待测矩形的四点坐标sdt:目标图像中矩形的四点坐标一、cv2.warpAffine放射变换函数,可实现旋转,平移,缩放;变换后的平行线依旧平cv2.warpAffine(src, M, dsize, dst=None, f
转载
2024-03-17 09:44:36
34阅读
基于形态学处理+基本特征实现车牌区域提取1、形态学梯度2、Sobel边缘检测实际上,提取车牌还是那个思路:区域分离->轮廓检测->特征判断这里提供这样一个算法,来源于《OpenCV图像处理编程实例》步骤如下:边缘检测,检测垂直边缘,尽量减少横向的边缘连通车牌区域----->实现手段:形态学梯度、或者Sobel边缘检测的垂直方向,当然也可以用其他边缘检测方法对边缘实现二值化区域填充
转载
2024-02-17 16:05:47
57阅读
OpenCV 学习笔记day12-roi区域提取函数inRange()代码 day12-roi区域提取利用mask(掩模)技术提取纯色背景图像ROI区域中的人和物,并将提取出来的人或物添加在其他图像上。 先通过cvtColor()函数,将原RGB彩色图像转换为hsv色彩空间的图像(色彩对比度比较高),然后通过inRange()函数获得ROI区域的Mask,再利用bitwise_not()函数取反
转载
2023-12-24 14:37:28
263阅读
opencv的色彩空间RGB和BGR最常见的色彩空间就是RGB,人眼也是基于RGB的色彩空间去分辨颜色的!opencv默认的使用的时BGR,BGR和RGB的色彩空间的区别在于图片在色彩通道上的排列顺序不同! 显示图片的时候需要注意适配图片的色彩空间的显示环境的色彩空间。比如传入的图片时BGR色彩空间,实现环境时RBG空间,就会出现颜色混乱的情况。HSV,HSL,和YUVHSVopencv
转载
2024-03-07 10:40:18
63阅读
文章目录1 OpenCV的色彩空间1.1 RGB和BGR1.2 HSV, HSL和YUV1.2.1 HSV(HSB)1.2.2 HSL1.2.3 YUV1.3 色彩空间的转换2 OpenCV的重要数据结构--Mat2.1 Mat介绍2.2 Mat拷贝2.3 访问图像(Mat)的属性2.4 通道的分离与合并 1 OpenCV的色彩空间1.1 RGB和BGR最常见的色彩空间就是RGB, 人眼也是基于
转载
2024-03-14 07:16:02
337阅读
作者 | 小白小伙伴们可能会觉得从图像中提取文本是一件很麻烦的事情,尤其是需要提取大量文本时。PyTesseract是一种光学字符识别(OCR),该库提了供文本图像。PyTesseract确实有一定的效果,用PyTesseract来检测短文本时,结果相当不错。但是,当我们用它来检测表格中的文本时,算法执行失败。图1.直接使用PyTesseract检测表中的文本图1描绘了文本检测结果,绿色框包围了检
转载
2024-02-19 13:49:12
138阅读
问题:如果文字大小存在比较大的差异时,怎么办? 答:这里给出另外一种策略,不是使用投影直方图,而是使用膨胀以及寻找连通区域。进行分割。 1)对图像二值化 2)对二值化之后的图像进行膨胀操作(dilate) 3)在2)得到的结果上寻找联通区域的边界(findContours)。 4)利用3)得到的结果画出方框。 本文是对这里的文章的另一种实现。使用C++。首先,读取图片Mat img =
转载
2024-03-23 12:38:19
447阅读
Kinect开发学习笔记之(四)提取颜色数据并用OpenCV显示 我的Kinect开发平台是:Win7 x86 + VS2010 + Kinect for Windows SDK v1.6 + OpenCV2.3.0开发环境的搭建见上一文: /article/details/8146055下面这几个大部分是参考“timebomb”的Kinect学习笔记系列:非常感谢“timebomb”的
转载
2024-05-20 23:48:02
81阅读
目录一、效果二、程序三、后记 一、效果该代码能够实现扫描依次排开的三个红绿蓝色块,并将它的颜色顺序返回实际效果图(123分别对应红绿蓝)二、程序程序中加入了大量的注释,对程序的语法和逻辑都做出了一些解释。# Titled - By: DingYF - 周三 2月 17 2021
import sensor, image, time #引入三个库
red = (48, 74, 18, 1
最近在做相关任务需要用到一些场景文本图像,于是找到了这篇论文;关于文本图像生成方法的思路还是很清晰的,
不过对于其具体执行、原理等了解掌握还是难度的;下面来稍微梳理一下思路、过程。这篇论文所做的主要贡献有两点:1.将文本嵌入到自然图片中,生成带有文本的图片。 2.提出一种FRCN的网络来检测文本。人工文本嵌入图像是有其优点的:可以精确的知道文本的位置及其内容,可以更好地对网络进行训练。一.文
HOG特征一、什么是HOG特征是关于目标区域梯度方向的特征是一个向量 二、如何提取HOG特征图片归一化处理,减弱光线、阴影等影响图像梯度计算,一般用卷积方法,水平模板为[-1,0,1],竖直模板为[-1,0,1]T,看到这个,很容易联想到边缘检测,实际上,这个梯度很大程度上就代表了图像的边缘轮廓信息统计梯度方向,将目标窗口(win:64*128)继续细分为块(block:16*16),而
转载
2024-05-28 08:20:29
64阅读
OpenCV基于颜色信息的车牌提取车牌提取的方法主要有:基于纹理特征分析法、基于数学形态学分析法、基于边缘检测的定位分析法、基于小波分析的定位分析法、基于彩色信息的定位分析法,本文采用的方法是基于颜色信息的定位分析法。 本文主要参考了以下这一篇博客,该博客是用C++编写的算法,我参考其方法用Python实现了一遍。参考的博客(C++编写的算法) 在代码中,我详细地注释了每一个步骤流程以及一些注意事
转载
2024-07-04 06:13:34
49阅读
一、图像原理1.1 三原色RGB(红绿蓝)是依据人眼识别的颜色定义出的空间,可表示大部分颜色。但在科学研究一般不采用RGB颜色空间,因为它的细节难以进行数字化的调整。它将色调,亮度,饱和度三个量放在一起表示,很难分开。它是最通用的面向硬件的彩色模型。该模型用于彩色监视器和一大类彩色视频摄像。RGB颜色空间 基于颜色的加法混色原理,从黑色不断叠加Red,Green,Blue的颜色,最终可以得到白色。
转载
2024-03-20 09:55:12
168阅读
*提取直线、轮廓和区域之前的二值边缘分布图有两个缺点。首先,检测到的边缘过厚,这导致更加难以识别物体的边界;第二,通常不能找到这样的阈值:低到足以检测到图像中的所有重要的边缘同时又避免产生太多无关紧要的边缘。Canny算法试图解决这样的问题。使用cv::Canny()函数需要给出低阈值和高阈值两个阈值。canny算子通常是基于sobel算子,低阈值是宽松阈值,很多不需要的也被检测出来了;高阈值则界
转载
2024-04-25 18:44:21
108阅读
一、目标:将图像中我们需要的部分提取出,进行扫描,提取出其中的文字。二、思路:首先我们要定位我们在图像中需要的部分,将其轮廓提取出。 - 1将图像变换大小 - 2灰度化,高斯滤波,边缘检测 - 3轮廓提取 - 4筛选第三步中的轮廓,选择其中较大的 - 5绘制轮廓的近似,返回其中有四个点的轮廓image = cv2.imread(args["image"])
ratio = image.shape[
转载
2023-11-20 08:21:25
1030阅读
1.RGB(BGR)色彩空间 BGR色彩空间特点:BGR是一种加色空间,最终图像由三个通道线性组合构成三通道数值与撞击在物体表面的光量有关 3.一般形式为(B,G,R):黑色为(0,0,0)白色为(255,255,255)可以看到,在RGB(在OpenCV中为BGR)空间内,室内的明暗度对三个不同通道的取色有着很大的影响。由此总结,RGB空间简洁有效,却存在着一定的问题:感知不一致性质(perce
转载
2024-03-02 11:09:06
54阅读
关于图片处理,经常遇到的一个问题是如何获取roi区域(说白了就是抠图),并对roi区域赋值,比如说赋值成黑色。首先,关于如何获取roi区域,opencv的Mat类中提供了两种方法。代码如下:Mat operator() (Range rowRange, Range colRange) const
Mat operator() (const Rect &roi) const上述两种
转载
2023-10-19 17:08:31
279阅读