Java OpenCV 图像处理26.0 HOG特征提取1 HOG 简述2 HOG 特征提取2.1 检测窗口2.2 归一化图像2.3 计算梯度2.4 统计直方图2.5 梯度直方图归一化2.6 得到HOG特征向量3 Java HOG 特征提取测试4 C# HOG 特征提取测试 1 HOG 简述HOG是Histogram of Oriented Gradient的缩写,是一种在计算机视觉和图像处理中
1.模板匹配(Template Match)(1)模板匹配介绍模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域,所以模板匹配首先需要一个模板图像T(给定的子图像)另外需要一个待检测的图像-源图像S工作方法,在带检测图像上,从左到右,从上到下计算模板图像与重叠子图像的匹配度,匹配程度越大,俩者相同的可能性越大模板匹配介绍——匹配算法介绍计算(归一化)平方不同计算(归一化)相关性计算(归一化)
转载 2024-02-29 11:23:06
480阅读
opencv自带linemod算子https://github.com/opencv/opencv_contrib/blob/4.x/modules/rgbd/src/linemod.cpphttps://github.com/opencv/opencv_contrib/blob/4.x/modules/rgbd/samples/linemod.cpp已知物体模型,从不同方向提取RGBD特征,处理
# Python OpenCV基于形状模板匹配 ## 简介 在计算机视觉领域,模板匹配是一种常用的技术,用于在一幅图像中寻找与给定模板最相似的部分。在本文中,我们将介绍如何使用Python中的OpenCV库进行基于形状模板匹配的实现。 ## 模板匹配原理 模板匹配的原理是计算模板图像与目标图像之间的相似性,找到最匹配的位置。在OpenCV中,可以通过`cv2.matchTemplate()`函
原创 2024-03-14 05:25:30
279阅读
1.问题或需求描述 opencv 基于形状模板匹配测试2.解决方法或原理:主要步骤:使用opencv查找轮廓(findContours)匹配轮廓(形状)(matchShapes)的相似度python代码:import cv2 # 读取目标图像 target_image = cv2.imread('target.png', cv2.IMREAD_COLOR) # 读取模板图像 template_
原创 2023-09-22 22:45:51
10000+阅读
一种基于openmv的分辨圆形,三角形,矩形的思路openmv作为一个开源,低成本,功能强大的机器视觉模,在很多视觉领域都有涉及应用。我在作为一个新手接触openmv,探索到了一种比较有效的分辨识别圆形,三角,矩形等色块的办法,在此分享给大家。我使用的openmv摄像头有自己的官方手册以及相关使用说明:星曈科技,里面对各个功能以及相关API都有一定的说明。前几天因为比赛,尝试使用openmv摄像头
## Java OpenCV 定义形状模板检测图片 在计算机视觉的领域,模板检测是一项重要的技术,它允许我们通过已经定义的模板来识别特定形状。本篇文章将带领你逐步完成“Java OpenCV 定义形状模板检测图片”的任务。我们将从基础知识开始讲解,经过一系列步骤,最终实现我们想要的效果。 ### 实现流程 下面是整个过程的步骤概览: | 步骤编号 | 步骤名称
原创 2024-10-27 05:07:06
14阅读
# Python OpenCV基于形状模板匹配 ## 简介 模板匹配是一种在图像中寻找与给定模板相似的图像区域的方法。在计算机视觉和图像处理中,模板匹配广泛应用于目标检测、目标跟踪、图像匹配等领域。Python中的OpenCV库提供了强大的模板匹配功能,使得我们可以方便地进行形状基准的图像匹配。 ## 模板匹配算法原理 模板匹配算法的基本原理是将一个给定的模板图像在待匹配图像中滑动,计算
原创 2024-02-08 04:46:02
209阅读
1 模板匹配1.1 原理所谓的模板匹配,就是在给定的图片中查找和模板最相似的区域,该算法的输入包括模板和图片,整个任务的思路就是按照滑窗的思路不断的移动模板图片,计算其与图像中对应区域的匹配度,最终将匹配度最高的区域选择为最终的结果。实现流程:准备两幅图像:1.原图像(I):在这幅图中,找到与模板相匹配的区域2.模板(T):与原图像进行比对的图像块滑动模板图像和原图像进行比对:将模板块每次移动一个
实验十三 轮廓形状分析实验一、实验目的和要求二、实验内容三、实验仪器、设备四、实验原理五、实验步骤六、实验注意事项七、实验结果八、实验总结 一、实验目的和要求  理解轮廓形状分析的基本原理;掌握实现轮廓形状分析的代码编写方法。二、实验内容  (一)新建工程;   (二)在Vs2015中配置OpenCV;   (三)得到原图的灰度图像并进行平滑;   (四)使用Threshold检测边缘;   (
OpenCV实现基于形状模板匹配(附源码)
原创 2022-08-27 01:07:57
3598阅读
1点赞
3评论
OpenCV支持大量的轮廓、边缘、边界的相关函数,相应的函数有moments、HuMoments、findContours、dr
转载 2023-01-05 11:46:34
139阅读
文章目录前言一、暴力匹配步骤分析二、代码分析 前言        特征匹配是一种图像处理技术,用于在不同图像之间寻找相似的特征点,并将它们进行匹配。特征匹配在计算机视觉和图像处理领域中具有广泛的应用,包括目标识别、图像拼接、三维重建等。一、暴力匹配步骤分析     &
目录 图像模板匹配 图像霍夫线检测 图像霍夫圆检测 图像模板匹配# 模板匹配 # 在给定的图片中查找和木板最相似的区域 # 输入包括模板和图片 # 思路:按照滑窗的思路不断移动模板图片,计算其与图像中对应区域的匹配度,最终将匹配度最高的区域选择为最终的结果 import cv2 as cv import matplotlib.pyplot as plt
使用特定形状的轮廓包围基本概念在实际应用中, 经常会有将检测到的轮廓用多边形表示出来的需求, 提取包围轮廓的多边形也方便我们做进一步分析, 轮廓包围主要有一下几种: - 轮廓外接矩形 - 轮廓最小外接矩形(旋转) - 轮廓最小包围圆形 - 轮廓拟合椭圆 - 轮廓逼近多边形曲线轮廓外接矩形不能进行旋转,为下图中所示的绿色框。 函数原型轮廓外接矩形—boundingRect()Rect bo
转载 2023-12-15 05:02:32
163阅读
矩形识别.利用opencv来识别图片中的矩形  其中遇到的问题主要是识别轮廓时矩形内部的形状导致轮廓不闭合。  1. 对输入灰度图片进行高斯滤波  2. 做灰度直方图,提取阈值,做二值化处理  3. 提取图片轮廓  4. 识别图片中的矩形  5. 提取图片中的矩形常用函数 (1)approxPolyDP 多边形逼近  
转载 2023-08-01 11:55:50
904阅读
文章目录检测前预处理----边缘检测二值图findContours函数----检测轮廓contourArea、arcLength函数----面积、周长contourArea函数----轮廓面积arcLength函数----轮廓长度approxPolyDP函数----曲线折线化drawContours函数----绘制轮廓示例 检测前预处理----边缘检测二值图所谓形状/轮廓的检测就是把待检测图像中
形态学滤波-角点检测就是利用形态学处理中的腐蚀和膨胀操作进行的角点检测、边缘检测。基本步骤第一步:十字型核-------->【对原图:膨胀操作】效果:原图在水平和垂直方向会扩展,而45度.135度方向没有得到扩展目的:目的是使得在下一步的腐蚀操作中,保证腐蚀后的边缘与原图一致,而只有角点被腐蚀掉第二步:菱形核-------->【对第一步的结果:腐蚀操作】效果:使得第一步的结果在水平和垂
转载 2024-04-25 19:24:03
117阅读
十六、背景建模怎样捕捉一个物体是前景(运动)还是背景(静止)?有两个方法 方法一:帧差法 由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。帧差法非常简单,但会引入噪音和空洞问题。 方法二:混合高斯模型 在进行前景检测前,先对背景进行
OpenCV支持大量的轮廓、边缘、边界的相关函数,相应的函数有moments、HuMoments、findContours、drawContours、approxPolyDP、arcLength、boundingRect、contourArea、convexHull、fitEllipse、fitLine、isContourConvex、minAreaRect、minEnclosingCircle、
转载 2024-01-17 22:34:27
121阅读
  • 1
  • 2
  • 3
  • 4
  • 5