本文主要介绍下opencv中自带的一个随机数发生器的类RNG,这里我用这个类来画一些图形,和基础学习笔记之opencv(13):基本绘图 一文中类似,只是 这里画出来图像的坐标,大小,颜色,角度等所有信息都是随机的,且是用RNG这个类产生的。参考文献为opencv自带tutiol及其代码。  开发环境:opencv2.4.2+Qt4.8.2+ubuntu12.04+QtCreator2.5  实验
转载 2024-10-04 14:12:12
33阅读
CvxText.h#ifndef OPENCV_CVX_TEXT_HPP_ #define OPENCV_CVX_TEXT_HPP_ // source from: http://www.opencv.org.cn/forum.php?mod=viewthread&tid=2083&extra=&page=1 // 支持OpenCV中文汉字输入 #include &lt
一、均值模糊均值模糊实际上是使用了典型线性滤波算法中的均值滤波算法,是一种线性平滑技术,通过将图像与归一化卷积核进行卷积来实现地。它仅获取内核区域下所有像素的平均值,并替换中心元素。所谓模糊实际上是卷积在图像处理上的一种表现,也可称之为图像的平滑处理过程。均值模糊优点在于效率高,思路简单,缺点是计算均值会将图像中的边缘信息以及特征信息“模糊”掉,会丢失很多有用特征。在OpenCV中实现均值模糊的A
模糊图像简介:本文主要记录了均值滤波、高斯滤波、中值滤波和双边滤波。一 模糊原理 Smooth/Blur 是图像处理中最简单和常用的操作之一使用该操作的原因之一就为了给图像预处理时候减低噪声使用Smooth/Blur操作其背后是数学的卷积计算通常这些卷积算子计算都是线性操作,所以又叫线性滤波 假设有6x6的图像像素点矩阵。卷积过程:6x6上面是个3x3的窗口,从左向右,从上向下移动,黄色的每个像素
资源下载#本文PDF版下载Python下图片的高斯模糊化的优化(或者单击我博客园右上角的github小标,找到lab102的W6目录下即可)#本文代码下载高斯模糊(一维)优化代码(和本文方法集合部分相同)前言在上一篇博文中,我们介绍了高斯模糊的算法,在文末的时候点到了当时我们的方法模糊一张很小的图要2.82s的时间,这对于很多需要高斯模糊需求的场景而言有着很大的局限性,以及在上一篇介绍的方法中,对
 模糊操作是图像处理中最简单和常用的操作之一,该使用的操作之一原因就为了给图像预处理时减低噪声,基于数学的卷积操作均值模糊,函数 cv2.blur(image,(5,5)),这是一个平滑图片的函数,它将一个区域内所有点的灰度值的平均值作为这个点的灰度值。像该函数对领域点的灰度值进行权重相加最后设置灰度值,这样的操作又叫卷积,这样的滤波器叫线性滤波器。中值模糊,函数cv2.medianBl
转载 2023-12-27 18:58:51
400阅读
基本原理图像退化模型在频率域的表示如下:其中S表示退化(模糊)图像频谱H表示角点扩散功能(PSF)的频谱响应U 表示原真实图像的频谱N表示叠加的频谱噪声圆形的PSF因为只有一个半径参数R,是一个非常好的失焦畸变近似,所以算法采用圆形的PSF。模糊恢复,模板恢复本质是获得一个对原图的近似估算图像,在频率域可以表示如下:其中SNR表示信噪比,因此可以基于维纳滤波恢复离焦图像,实现图像反模糊。这个过程最
本篇通过PS教同学们把模糊照片变清晰,学习以后你会发现本来打算放回收站的照片焕然一新,整个制作过程也比较好上手,会用到PS中的高反差保留等操作,具体通过教程来学习一下吧。效果图: 素材: 操作步骤:第一步:执行:Ctrl+O 导入要处理的模糊照片。 第二步:执行:Ctrl+J 对背景图像复制一层,得到图层1。 第三步:执行:“滤镜--其他--高反差保
摘要:本文主要讲解ACE去雾算法、暗通道先验去雾算法以及雾化生成算法。 作者:eastmount 。一.图像去雾随着社会的发展,环境污染逐渐加剧,越来越多的城市频繁出现雾霾,这不仅给人们的身体健康带来危害,还给那些依赖图像信息的计算机视觉系统造成了不良影响,因为在雾天采集到的图像对比度和饱和度均较低,颜色易发生偏移与失真等。因此,寻找一种简单有效的图像去雾方法,对计算机视觉的后续研究至关重
        使用低通滤波器可以达到图像模糊的目的。这对与去除噪音很有帮助。其实就是去除图像中的高频成分(比如:噪音,边界)。所以边界也会被模糊一点。(当然,也有一些模糊技术不会模糊掉边界)。OpenCV 提供了四种模糊技术。 1.平均       
转载 2023-09-08 22:52:13
79阅读
Opencv 和 Python 模糊检测 在刚刚过去的这个周末,我坐下来想在 iphoto 中整理这些海量的照片。这不仅仅意味着巨大的工作量,因为我很快注意到一个现象——其中充斥着大量模糊的照片。主要因为我的摄影技术比较low,Jemma又特别活泼,跑来跑去,有时候看到我拍照,它又吓得缩起来发抖,所以我抓拍的效果不是很好,导致有多照片都是模糊的作为一个普通人,我可能会想软件设计者们会开发出新功
转载 2024-01-02 19:05:30
73阅读
11.OpenCV的图像模糊 文章目录前言一、均值滤波二、高斯滤波三、方框滤波四、中值滤波五、双边滤波六、2D滤波七、OpenCV-Python资源下载总结 前言  图像模糊也称平滑处理,它主要处理图像中与周围差异较大的点,将其像素值调整为与周围点像素近似的值,其目的主要是消除图像噪声和边缘。一、均值滤波  均值滤波是指以当前点为中心,用其周围N * N个像素点的平均值来代替代替当前点的像素值。用
模糊处理所用的原理:数学上的卷积计算,所谓的卷积算子或称为掩模(窗口),简单理解为一组m*n矩阵,m,n为奇数的好,这样可以保证中心点存在,针对图像的像素矩阵,自上向下,自左向右的移动掩模矩阵(或卷积算子)的中心点,从而遍历像素矩阵(注意,3*3的掩模矩阵,边缘的1列像素点无法处理,5*5的掩模矩阵,边缘的2个像素点无法处理,这些无法处理的像素点可以采取其他算法处理)。常用的几种方式(各具特色,各
转载 2023-11-25 15:58:23
38阅读
模糊图像图像模糊是图像处理中最常用的也是比较简单的操作,使用该操作的原因之一就是为了给图像预处理时隆低嗓声.卷积就是叠加.卷积的重要的物理意义是:一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。通俗的说: 在输入信号的每个位置,叠加一个单位响应,就得到了输出信号。 这正是单位响应是如此重要的原因。卷积的应用用一个模板和一幅图像进行卷积,对于图像上的一个点,让模板的原点和该点重合,
模糊操作基本原理1.基于离散卷积 2.定义好每个卷积核 3.不同卷积核得到不同的卷积效果 4.模糊是卷积的一种表象卷积原理根据视频所讲的意思 2 3 6 8 5 7 6 6 9 1 2 3 5 6 6 6 6 7 5 1 5=3+6+8/3取整 7=6+6+9/3模糊操作1.均值模糊#均值模糊 def blur_demo(image): #卷积,卷积之后变平滑(5,5)是一个5行5列的矩阵
转载 2023-10-27 11:27:58
134阅读
模糊操作方法:均值模糊,中值模糊,自定义模糊模糊原理: 基于离散卷积,不同的卷积得到不同的卷积效果,模糊是卷积的表象。基础讲解链接opencv学习笔记11:图像滤波(均值,方框,高斯,中值)卷积原理示意图: (2乘1+3乘以1+6乘以1)除以3=3 边缘2和1未被卷积保留 边缘不参与卷积直接保留。均值模糊import cv2 as cv import numpy as np def blur_d
转载 2024-03-08 18:05:21
149阅读
图像平滑(图像模糊):    一幅图像和一个低通滤波器进行卷积,能够实现图像平滑效果,也就是图像模糊效果。平滑操作通常会从图像中移除高频信息(噪音、边缘)。所以图像平滑后,图像边缘往往会被模糊(本文介绍的最后一种双边模糊技术基本不会模糊图像边缘)。Opencv 提供了多种图像平滑技术,也叫图像模糊技术。1. 平均模糊# kernel size is 5*5blur =&nbsp
模糊操作方法:均值模糊,中值模糊,自定义模糊 模糊原理: 基于离散卷积,不同的卷积得到不同的卷积效果,模糊是卷积的表象。卷积原理: (2乘1+3乘以1+6乘以1)除以3=3 边缘2和1未被卷积保留 边缘不参与卷积直接保留。这个应该是均值模糊1.均值模糊:代码如下:import cv2 as cv import numpy as np #均值模糊:去除随机噪声 def blur_demo(imag
图像模糊 -线性滤波均值滤波高斯滤波中值滤波     2.非线性滤波双边滤波图像模糊的作用 -图像预处理时减低噪声。模糊操作的基本原理 - (数学的卷积运算)         其中权重核H(K,L)H(K,L)为“滤波系数”上面的式子可以简记为:  通常这些卷积算子计算都是线性操作,所以又叫线性滤波
title: OpenCV-图像模糊(图像平滑)OpenCV-图像模糊(图像平滑)学习如下:cv.bulr()cv.GaussianBlurcv.medianBlurcv.bilateralFilter""" 通过将图像与低通滤波器内核进行卷积来实现图像模糊。这对于消除噪音很有用。 它实际上从图像中消除了高频部分(例如噪声,边缘)。 因此,在此操作中边缘有些模糊。(有一些模糊技术也可以不模糊边缘)
  • 1
  • 2
  • 3
  • 4
  • 5