一幅图像的纹理是在图像计算中经过量化的图像特征。图像纹理描述图像或其中小块的空间颜色分布和光强分布。基于结构的方法和基于统计数据的方法。一个基于结构的纹理特征提取方法是将所要检测的纹理进行建模,在图像中搜索重复的模式。该方法对人工合成的纹理识别效果较好。但对于交通图像中的纹理识别,基于统计数据的方法效果较好。1 LBP纹理特征 &
转载
2023-08-05 10:49:55
446阅读
求一幅图的纹理特征图原图 (1)转为灰度图cvtColor(src_img, gray_img, CV_BGR2GRAY); (2)获得LBP模板并赋值LBP纹理提取代码/*
CV:LBP
Author:1210
Date:2019/03/17
*/
#include <opencv2/opencv.hpp>
#include <highgui.h>
using name
转载
2023-05-23 14:30:08
221阅读
目录原理方法结构元素提取步骤相关API代码现象 原理方法图像形态学操作时候,可以通过自定义的结构元素实现结构元素对输入图像一些对象敏感、另外一些对象不敏感,这样就会让敏感的对象改变而不敏感的对象保留输出。 通过使用两个最基本的形态学操作 – 膨胀与腐蚀,使用不同的结构元素实现对输入图像的操作、得到想要的结果。膨胀,输出的像素值是结构元素覆盖下输入图像的最大像素值腐蚀,输出的像素值是结构元素覆盖下
1、前言传统 LBP 特征通过比较重心局部窗口区域中心像素点灰度值与其它像素点的灰度关系来进行二值编码,因而极易受噪点影响。在非均匀光照、噪声及遮挡等情况下对图像纹理特征的描述能力不足。ELBP 在对图形进行二值特征时,不仅考虑中心像素点灰度值与其它像素点的灰度大小关系,还对其灰度差异值的绝对值进行编码,以增加图像纹理的细节信息。本文旨在介绍 ELBP 特征提取方式实现思路。2、实现原理传统 LB
转载
2023-12-20 05:34:30
194阅读
前文大概介绍了CPU中的ORB特征提取算法的实现方法。其中提到了虽然ORB是专门为CPU设计的特征提取算法,但在OpenCV中的cudafeatures2d里也存在着用CUDA加速的ORB算法库(OpenCV编译时需交叉编译CUDA才可用)。网上关于OpenCV3中GPU加速的ORB算法的实例特别少,博主根据官方的reference介绍,参考CPU版的ORB算法,摸索出了一套CUDA ORB算法的
转载
2024-07-31 17:39:26
96阅读
Gabor是一个用于边缘提取的线性滤波器,其频率和方向表达与人类视觉系统类似,能够提供良好的方向选择和尺度选择特性,而且对于光照变化不敏感,因此十分适合纹理分析。 理论和C++版本的Gabor实现看:gabor参数说明: 波长(λ):它的值以像素为单位指定,通常大于等于2.但不能大于输入图像尺寸的五分之一。通常用的是它的倒数频率f大于等于0.2。方向(θ):这个参数指定了Gabor函数并行条纹的方
转载
2024-04-08 13:54:19
96阅读
一、算法需求基于基于纹理特征提取车辆照片中的车牌区域 二、问题分析在车辆照片中提取车牌区域,需要对图像进行系列变化,移除图像的非车牌区域,使车牌区域在图像中变得显著。目前分析发现,在车辆照片中,车牌区域的特点如下: 1、具有固定的颜色(一般车牌为蓝色、白色、黄色、和绿色) 2、具备特定的字符(车牌号包含汉字、字母、数字) 3、字符具备特定排列规则(车牌号都是水平排列的) 目前不考虑考虑颜色实
转载
2023-12-27 11:35:45
460阅读
机器学习最主要就是特征提取和特征分类。提取的特征的好坏,直接影响这分类的结果判断,所以在整个系统中占有很重要的位置。所提取的特征要在能表征物体特征的基础上,尽量做到维数少,易于计算和存储。常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征等。(1)颜色特征 特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像
转载
2023-12-14 19:34:13
81阅读
文章目录前言一、为什么要进行批处理二、具体步骤1.选择输入图像所在路径2.选择输出图像保存路径3.批量读取图像、处理,输出(以提取边缘特征为例)4.完整代码三、实验演示总结参考博客 前言最近在复现论文,其中有一个环节是对图像进行特征提取,因为图像太多所以需要进行批处理。一、为什么要进行批处理在大部分图像处理任务中,第一步是对所需算法进行研究,在这一过程往往只针对一张或者少量图像进行处理,研究算法
转载
2024-07-31 11:41:26
112阅读
一、LBP特征的概述LBP指局部二值模式,英文全称:Local Binary Pattern,是一种用来描述图像局部特征的,LBP特征具有灰度不变性和旋转不变性等显著优点。同时是一种描述图像特征像素点与各个像素点之间的灰度关系的局部特征的非参数算法,同时也是一张高效的纹理描述算法。纹理是物体表面的自然特性,它描述图像像素点与图像领域之间的灰度空间的分布关系,不会因光照强弱而改变图像的视觉变化。由于
转载
2024-03-26 13:27:24
73阅读
特征提取——纹理特征
LBP图像特征
图像处理之特征提取(二)之LBP特征简单梳理<br>
https://blog.csdn.net/coming_is_winter/article/details/72859957<br>
https://blog.csdn.net/zouxy09/article/details/7929531<br>
LBP特征理解。&l
原创
2023-06-05 20:16:27
916阅读
计算机视觉的特征提取算法研究至关重要
转载
2021-07-22 16:14:06
1619阅读
计算机视觉的特征提取算法研究至关重要。在一些算法中,一个高复杂度特征的提取可能能够解决问题(进行目标检测等目的),但这将以处理更多数据,需要更高的处理效果为代价。而颜色特征无需进行大量计算。只需将数字图像中的像素值进行相应转换,表现为数值即可。
转载
2021-07-16 13:51:54
958阅读
LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征;1、LBP特征的描述LBP算子定义为在3*3的窗口内,以窗口中
# 图像纹理特征提取深度学习指南
图像纹理特征提取是计算机视觉中的一个重要任务,通过分析图像中的纹理信息,帮助我们更好地理解和处理图像。在本指导中,我将带领你了解如何使用深度学习来提取图像纹理特征。整个过程可以分为以下几个步骤:
## 流程概述
我们将整个流程总结为以下表格:
| 步骤 | 描述
王萌深度学习冲鸭著作权归作者所有,文仅分享,侵删1...
转载
2021-07-18 15:28:47
2964阅读
“拍立淘”“一键识花”“街景匹配”……不知道大家在使用这些神奇的功能的时候,有没有好奇过它们背后的技术原理?其实这些技术都离不开最基本的图像检索技术。本篇文章我们就将对这一技术的原理进行介绍,并通过一个简单的Python脚本来实现一个最基本的图像检索demo。 ▌图像特征 首先我们需要明白图像特征是什么以及它的使用方法。图像特征是一种简单的图像模式,基于这种模式我们可以描述我们在图
转载
2024-05-09 12:16:51
152阅读
# Java OpenCV 图像特征提取
图像特征提取是计算机视觉中的一个核心任务,它的目标是从图像中提取出对理解其内容有帮助的信息。这对于对象识别、图像分类等任务至关重要。本文将介绍如何在 Java 中使用 OpenCV 来进行图像特征提取,并通过代码示例来展示整个过程。
## OpenCV简介
OpenCV(Open Source Computer Vision Library)是一个开
原创
2024-10-24 05:55:19
180阅读
## 纹理特征提取 LBP Python OpenCV 实现
在计算机视觉与图像处理领域,纹理特征提取是一个重要的环节。不同的图像可以展现不同的纹理特征,通过这些特征,我们可以进行图像分类、目标检测等多种应用。其中,局部二值模式(Local Binary Pattern, LBP)是一种经典且广泛应用的纹理特征提取方法。本文将介绍如何利用Python和OpenCV实现LBP纹理特征提取。
##