基于FPGA的视频图像直方图均衡 图像处理 图像增强 VGA对比度增强CLAHE 本设计是基于FPGA的视频图像直方图均衡,实现的效果是可以实时地将摄像头采集的图像进行直方图均衡,具体过程是FPGA控制摄像头采集环境图像,然后数据一路送给SDRAM缓存,另一路放到直方图均衡模块,接着从SDRAM读取出缓存的数据也送到直方图模块进行均衡,最后将直方图模块的输出通过VGA进行显示。 第一张图:将摄像
一、引言在《数字图像处理:局部直方图处理(Local Histogram Processing) 》介绍了基于像素的邻域进行直方图均衡或直方图匹配,这种局部直方图处理方式克服了在前面章节《《数字图像处理》直方图均衡学习总结+感悟》、《数字图像直方图匹配或规定化Histogram Matching (Specification)处理》介绍的全局直方图均衡处理和直方图匹配的一些问题,但局
灰度级的直方图描述了一幅图像的基本概貌,用修改直方图的方法增强图像是实用而且有效的方法之一。 直方图的定义: 灰度级的直方图是什么? 就是反映一幅图上灰度级与出现这种灰度的概率之间的关系。如直角坐标系中,横坐标表示一幅图灰度的等级(灰度级),纵坐标表示某个特定等级的灰度在该幅图像上出现的次数(概率)。假设某个图片的灰度级r的范围为0到1(r=0表示黑,r=1表示白),某个灰度出现的概率为Pr(r)
对于一份试卷,我现在需要检测到填空题上面的横线。如下图: 很多人第一反应是霍夫直线检测,包括我也是想到用霍夫直线检测。然而事实并不尽如人意。因为在我的博客中并没有放上霍夫直线检测这一部分,所以,我用霍夫直线算法来检测试卷上的横线。霍夫直线检测:#include<opencv2/opencv.hpp> #include<iostream> #include<math.h
引言:霍夫变换(Hough Transform)是图像处理中的一种特征提取技术,它通过一种投票算法检测具有特定形状的物体。该过程在一个参数空间中通过计算累计结果的局部最大值得到一个符合该特定形状的集合作为霍夫变换结果。霍夫变换于1962年由Paul Hough 首次提出[53],后于1972年由Richard Duda和Peter Hart推广使用[54],经典霍夫变换用来检测图像中的直线,后来霍
1.直线: import matplotlib.pyplot as plt input_values=[1,2,3,4,5] squares = [1,4,9,16,25] #设置图表标题,并给坐标轴加上标签 plt.plot(input_values,squares,linewidth=5) plt.xlabel("Value",fontsize=14) plt.ylabel("Square o
转载 2023-06-02 13:07:02
402阅读
这里只是记录了一些常见形状的绘制,更多形状的绘制请参考OpenCV参考手册中的相关API;1.绘制直线API说明: 除了直线OpenCV还提供了绘制折线的API,如下:参考程序://绘制直线 Point P1 = Point(0, 0);//点的定义 Point P2; P2.x = 200; P2.y = 100; Point P3 = Point(400, 0); Scalar
转载 2024-03-07 10:40:30
58阅读
HoughLinesP,HoughCircles,三个函数,首先先看看原理,最后会用漂亮的matlab图,来回归一下,霍夫直线变换。霍夫线变换: 众所周知, 一条直线在图像二维空间可由两个变量表示. 例如:在 笛卡尔坐标系: 可由参数:  斜率和截距表示.在 极坐标系: 可由参数:  极径和极角表示对于霍夫变换, 我们
    1.最简单的霍夫变换是在图像中识别直线。在平面直角坐标系(x-y)中,一条直线可以用下式表示:y=kx+b。    这表示参数平面(k-b)中的一条直线。因此,图像中的一个点对应参数平面中的一条直线,图像中的一条直线对应参数平面中的一个点。对图像上所有的点作霍夫变换,最终所要检测的直线对应的一定是参数平面中直线相交最多的那个点。这
目标• 理解霍夫变换的概念• 学习如何在一张图片中检测直线• 学习函数:cv2.HoughLines(),cv2.HoughLinesP()原理霍夫变换在检测各种形状的的技术中非常流行,如果你要检测的形状可以用数学表达式写出,你就可以是使用霍夫变换检测它。及时要检测的形状存在一点破坏或者扭曲也可以使用。我们下面就看看如何使用霍夫变换检测直线。一条直线可以用数学表达式 y = mx + c 或者 ρ
转载 2024-03-11 13:24:41
80阅读
继续搬砖,opencv的core模块下的第六部分基本绘图: 我们打算画两个例子(原子和赌棍), 所以必须创建两个图像和对应的窗口以显示。 /// 窗口名字 char atom_window[] = "Drawing 1: Atom"; char rook_window[] = "Drawing 2: Rook"; /// 创建空全黑像素的空图像 Mat atom_image = Mat::
转载 2024-08-06 09:54:13
34阅读
Open CV系列学习笔记(十六)直线检测霍夫变换霍夫变换是一种特征检测(feature extraction),被广泛应用在图像分析(image analysis)、计算机视觉(computer vision)以及数位影像处理(digital image processing)。霍夫变换是用来辨别找出物件中的特征,例如:线条。他的算法流程大致如下,给定一个物件、要辨别的形状的种类,算法会在参数空
转载 2024-01-02 13:15:14
233阅读
OpenCV 学习(Hough 变换提取直线)在机器视觉应用中,我们经常要提取图像中的各种特征,最基本的特征就是图像中的线条、拐角等。这篇笔记就来讲讲如何提取图像中的直线。这里使用的方法叫做 Hough 变换。Hough 变换这个名称最早是在 Richard Duda 和 Peter Hart 两人于 1972 年合写的发表于 Comm. ACM 文章 《Use of the Hough Tran
 霍夫变换(Hough Transform)的主要思想:  OpenCV的霍夫变换(Hough Transform)直线检测 一条直线在平面直角坐标系(x-y)中可以用y=ax+b式表示,对于直线上一个确定的点(x0,y0),总符合y0-ax0=b,而它可以表示为参数平面坐标系(a-b)中的一条直线。因此,图像中的一个点对应参数平面的一条直线,同样,图像中的
转载 2023-12-27 20:52:09
184阅读
文章概述      这篇文章来自 CVPR 2019。文章提出了一种新的端到端图像增强网络,该网络没有像以前那样直接学习图像到图像的映射,而是在网络中引入中间光照,将输入与预期的增强结果相关联,从而增强了网络从经过专家修饰的输入/输出图像对学习复杂的摄影调整的能力(没有直接学习图像到图像的映射,而是设计网络,首先估计用于建模各种光照条件的图像到光照的映射,然后使用光照
OpenCV实现了直线的拟合。 二维的直线拟合? 调用的函数 1 static CvStatus icvFitLine2D_wods( CvPoint2D32f * points, int _count, float *weights, float *line ) 2 { 3 double x =
转载 2018-06-28 20:34:00
1023阅读
论文名 :EDLines:一个具有误检控制的实时线段检测器摘要我们提出了一种线性时间线段检测器,其结果准确,不需要参数调整,运行速度比文献中最快的线段检测器快11倍; 即Grompone von Gioi等人的线段检测器(LSD)。该算法利用了我们的新边缘检测器——边缘绘制(ED)算法产生的干净、连续(连通)的边缘像素链;因此得名EDLines。由于亥姆霍兹原理,检测器包括一个行验证步骤,该步骤允
目标在这一章当中, - 我们将了解霍夫变换的概念。 - 我们将看到如何使用它来检测图像中的线条。 - 我们将看到以下函数:cv.HoughLines(),cv.HoughLinesP()理论如果可以用数学形式表示形状,则霍夫变换是一种检测任何形状的流行技术。即使形状有些破损或变形,也可以检测出形状。我们将看到它如何作用于一条线。一条线可以表示为y=mx+c 或以参数形式表示为ρ=xcosθ+ysi
概述在该例程中,我们将从底层设计一个直线绘制算法,并借助OpenCV将结果展示出来。例程引入了模块化的设计,拆分了三个模块内存图像模块,封装了和内存图像相关的操作。直线模块,封装了直线元素的算法逻辑。主函数逻辑模块,封装了我们想要实现的功能逻辑。绘制直线是经典计算机图形学的基础算法之一,是传统的格栅化渲染过程中的一个基础方法,当然我们不会过多阐述经典计算机图形学的理论,在例程最后,可以看到我们在内
OpenCV有绘图函数,可以把想要的图形直接画到图像,分别为line()画直线、arrowedLine()带形状直线、rectangle()画矩形、circle()画圆、ellipse()画椭圆、fillConvexPoly()填充多边形、drawContours()画轮廓、putText()显示文字。下面介绍这些函数的简单用法:1  画直线 linevoid line(InputOut
转载 2024-02-23 11:40:48
51阅读
  • 1
  • 2
  • 3
  • 4
  • 5