一、异常检测简介异常检测是通过数据挖掘方法发现与数据集分布不一致的异常数据,也被称为离群点、异常值检测等等。1.1 异常检测适用的场景异常检测算法适用的场景特点有: (1)无标签或者类别极不均衡; (2)异常数据跟样本中大多数数据的差异性较大; (3)异常数据在总体数据样本中所占的比例很低。 常见的应用案例如:金融领域:从金融数据中识别”欺诈用户“,如识别信用卡申请欺诈、信用卡盗刷、信贷欺诈等;
转载
2024-10-09 14:40:38
17阅读
一、工具篇 工欲善其事,必先利其器。学习OpenCV,肯定少不于基本的编程工具与OpenCV库。在Windows平台下你可以选择Visual Studio、CodeBlock等,当然你也可以选择在Linux平台,用VI、codeBlock都是可以的。编程平台的选择看个人爱好以及项目的开发环境。然后是OpenCV库,你可以在这里下载到最新的版本:http://opencv.org/,最近的版本已经
一、什么是计算机视觉计算机视觉这种技术可以将静止的图像或视频数据转换为一种决策或新的表示。所有这样的转换都是为了完成某种特定的目的而进行的。输入数据可能包含一些场景信息,例如“相机是搭载在衣领车上的”或者“雷达发现了一米之外有一个目标”。表示形式是将色彩图像转换为黑白图像,或者从一个图像序列中消除相机运动所产生的影响。非计算机专业人士可能会觉得计算机视觉是一种很简单的任务,但是这是一种由于人类是视
转载
2024-10-28 01:31:53
70阅读
我们都看过3D电影,他们看起来都很酷,这给了我们一个想法,使用一些工具通过改变看图像视角,模拟观众的头部移动。效果如何?我们都熟悉"视差"这一术语,它是描述对象在左右眼中的位置差距,视差的大小这取决于我们离它有多远。视差因此,如果我们能在2D图像中获得与不同图像层的相同效果,那么我们可以在这些图像中产生类似的感觉,并产生我们想要的酷效果。让我们分解一下这个过程深度图因此,首先,我们需要将图像分解为
转载
2024-01-22 11:20:01
734阅读
第6章主要从图像内容和像素的角度介绍了有关图像处理的一些内容,包括如何对图像进行滤波和变换操作,或以不同的方式对像素值进行处理。对于模板匹配,我们仅利用原始像素内容来获取结果,以确定特定对象是否存在于图像的某一部分中。但是,我们尚未学习如何设计算法来区分不同类型的对象。为此目的,不仅要利用原始像素,而且还要利用图像基于特定特征所呈现出的集体含义。对于人类来说,假定不是极端相似,识别和区分不同类型的
第6章主要从图像内容和像素的角度介绍了有关图像处理的一些内容,包括如何对图像进行滤波和变换操作,或以不同的方式对像素值进行处理。对于模板匹配,我们仅利用原始像素内容来获取结果,以确定特定对象是否存在于图像的某一部分中。但是,我们尚未学习如何设计算法来区分不同类型的对象。为此目的,不仅要利用原始像素,而且还要利用图像基于特定特征所呈现出的集体含义。对于人类来说,假定不是极端相似,识别和区分不同类型的
学更好的别人,做更好的自己。——《微卡智享》本文长度为2020字,预计阅读6分钟 OpenCV图片修复最近重新学习OpenCV的基础,偶然间发现了npaint的函数,于是就自己做了Demo测试了下,感觉还不错,这篇就来分享一下OpenCV的图片修复函数。实现效果上图中可以看到我们对左边源图中右下角蓝色的球区域进行的修复,修复后右图的效果那个蓝色的球就已经不见了。inpaint函数APIvoid
转载
2024-07-17 08:29:12
0阅读
(转载不是目的,而是为了方便自己!)双目立体视觉,在百度百科里的解释是这样解释的:双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。一 、视差 Disparity与深度图提到双目视觉就不得不提视差图:双目立体视觉融合两只眼睛获得的图像
因为怕忘记,所以就转过来了!(原文:) 三种匹配算法比较 BM算法: 该算法代码: 1. CvStereoBMState *BMState = cvCreateStereoBMState();
2. int SADWindowSize=15;
3. BMState->SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 9;
首先,我们要知道视差贴图Parallax Mapping的作用,为什么要引入它。对于一张原本2D的图片,我们通过使用法线贴图,使其表面表现出了一定的凹凸感,细节感。但是还是可能会出现一些问题,法线贴图只能通过明暗来表现凹凸,同时它忽视了现实中的一些效果。比如说遮挡的效果,只应用了法线贴图的纹理无法塑造出正确的遮挡效果(这里的遮挡效果要和深度测试区分开,你也可以说这种效果为“更加强烈”的凹凸感,并且
转载
2024-04-11 21:21:21
165阅读
关键词:相机位姿估计,单目尺寸测量,环境探知用途:基于相机的环境测量,SLAM,单目尺寸测量文章类型:原理说明、Demo展示@Author:VShawn@Date:2016-11-28@Lab: CvLab202@CSU目录《相机位姿估计0:基本原理之如何解PNP问题》《相机位姿估计1:根据四个特征点估计相机姿态》《相机位姿估计1_1:OpenCV:solvePnP二次封装与性能测试》《相机位姿估
在 OpenGL ES 2.0 上实现视差贴图(Parallax Mapping)视差贴图最近一直在研究如何在我的 iPad 2(只支持 OpenGL ES 2.0, 不支持 3.0) 上实现 视差贴图(Parallax Mapping) 和 位移贴图(Displacement Mapping).经过一番研究, 搜索阅读了不少文章, 终于确定, OpenGL ES 2.0 可以支持 视差贴图, 不
视差图得到视差 在之前的教程中,我向您展示了如何使用CSS 3D变换创建等轴测网格布局 。 这是非常具有挑战性的,因为诸如Firefox之类的一些浏览器在如何在三维平面上呈现元素方面具有略有不同的方法。 在本教程中,我们将通过受Apple TV界面的启发,构建3D视差翻转效果,从而继续探索3D变换。 我们仍将使用Envato Elements作为内容的灵感; 这是我们正在努力的方向: 将鼠标悬
转载
2024-09-03 19:49:36
106阅读
4.2 捕获深度摄像头的帧
深度图:它是灰度图像,该图像的每个像素值都是摄像头到物体表面之间距离的估计值。比如,CAP_OPENNI_DEPTH_MAP通道的图像给出了基于浮点数的距离,该距离以毫米为单位。 点云图:它是彩色图像,该图像的每种颜色都对应一个 (x、y或z)维度空间。比如,CAP_ OPENNI POINT_ CLOUD_ _MAP通道
转载
2024-04-08 00:00:19
83阅读
计算视差图1. 立体视差2. 极线矫正3. 归一化互相关(NCC)4 . 计算视差图的步骤5. 实验过程5.1 实验代码5.2 实验结果及分析5.2.1 视差图计算结果5.2.2 不同窗口值(wid)的视差图6. 实验中遇到的问题及解决 1. 立体视差立体视差 ,亦称立体视像、立体知觉。基于双眼视差所 获得的深度知觉。立体视差的测量包括三个步骤: (1)必须从一幅图像中选出位于场景中一个表面上的
视差图建立
转载
2021-06-23 16:28:40
324阅读
视差图建立
原创
2021-07-16 17:00:37
252阅读
mark
我们正在定义一种新的机器学习方法,专注于一种新的范式 -- Data Fabric。
在上一篇文章中,我们对机器学习给出了新的定义:
机器学习是一种自动发现Data Fabric中隐藏的洞察(insight)的过程,它使用的算法能够发现这些洞察(insight),而无需专门为此编写程序,从而创建模型来解决特定(或多个)问题。 理解这
目录1.原理:双目系统模型推导 2.U-V视差的构造3.各种3D平面在U-V视差中的投影 4.实例 5.Opencv实现 参考:1.原理:双目系统双目相机系统如下图所示:f为焦距,b为基线,P(X,Y,Z)为三维点。 我们可以得到视差的公式如下:(双目视觉系统)模型推导 首先,当我们使用双目相机拍摄真实世界时,如下图所示,(Xw ,Yw
《学习OpenCV(中文版)》作者:(美)布拉德斯基(Bradski,G.), (美)克勒(Kaehler,A.) 著 出版社:清华大学出版社 出版时间:2009年10月一、计算机视觉 计算机视觉是在图像处理的基础上发展起来的新兴学科,在计算机科学和工程、信号处理、物理学、应用数学和统计学,神经生理学和认知科学等研究方面,在制造业、检验、文档分析、医疗诊断,和军事等领域等各种智能/自主应用方面,
转载
2024-03-27 13:36:43
28阅读