# 使用 Python OpenCV 计算图片中的白色面积 在图像处理的任务中,计算特定颜色(如白色)的面积是一个常见的应用场景。接下来,我将指导你如何使用 Python 中的 OpenCV 库来实现这一目标。以下是我们将要完成的整个流程: | 步骤 | 描述 | |------|------| | 1 | 导入所需的库 | | 2 | 读取图像 | | 3 | 转换颜色空间
原创 2024-10-09 06:19:51
294阅读
题目:给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。 在该柱状图中,能够勾勒出来的矩形的最大面积。 解法一:暴力法(已经是优化的暴力法) def findmaxarea(nums): l = len(nums) temp = 0 lowest = nums[0]
1、问题描述:轮廓的面积contourArea()得出一个面积,后面利用宽*高得出一个面积,两个面积结果不一样。统计发现前者面积永远小于后者面积。2、contourArea()findContours()  提取轮廓, contourArea() 计算轮廓面积。ContourArea计算轮廓的面积使用格林公式。格林公式是什么?在高数的曲线曲面积分部分,格林公式、高斯公式和斯托克斯公式是三
这里即有AI,也有大道理。 1、问题描述:轮廓的面积contourArea()得出一个面积,后面利用宽*高得出一个面积,两个面积结果不一样。统计发现前者面积永远小于后者面积。 编辑添加图片注释,不超过 140 字(可选)  添加图片注释,不超过 140 字(可选) 2、contourArea()findContours() 提取轮廓, contourAre
01引言大家用OpenCV做开发,经常需要调试算法,打印出算法的执行时间,OpenCV中没有直接获取时间戳的函数,但是有两个根据CPU时钟可以精准计算算法每个步骤执行时间的函数,通过它们可以计算一行或者多行代码的执行时间,视频处理的FPS等性能指标。计算执行时间cv.getTickCount,返回CPU执行的时间周期数,cv.getTickFrequency每秒CPU时间周期总数计算一段算法处理执
1、 matlab函数bwareaopen──删除小面积对象 格式:BW2 = bwareaopen(BW,P,conn) 作用:删除二值图像BW中面积小于P的对象,默认情况下使用8邻域。 算法: (1)Determine the connected components.   L = bwlabeln(BW, conn); (2)Compute the area of each com
Opencv入门系列六主要内容:图像平滑处理:通过特定的操作在保证原图像特征完整的前提下,滤除一些噪音信号,将图像信息相邻像素点差距较大的进行近似处理。这里不同的滤波对应不同取近似值的方法。图像平滑处理对应的是英文Smoothing Images。图像平滑处理通常伴随图像模糊操作,因此图像平滑处理有时也被称为图像模糊处理,图像模糊处理对应的英文是Blurring Images。均值滤波方框滤波高斯
轮廓面积轮廓面积是轮廓重要的统计特性之一,通过轮廓面积的大小可以进一步分析每个轮廓隐含的信息,例如通过轮廓面积区分物体大小识别不同的物体。轮廓面积是指每个轮廓中所有的像素点围成区域的面积,单位为像素。OpenCV 4提供了检测轮廓面积的**contourArea()**函数,该函数的函数原型在代码清单7-15中给出。double cv::contourArea(InputArray contou
小强学AI第一部《小强学python+opencv》写在前面:有没有想过使用Python + OpenCV来实现人脸识别? 想想就有点小兴奋吧。 小强也是不久前才了解到可以使用Python + OpenCV进行图像处理。觉得有趣就想学习一下。 在这里,把我学到的小知识记录一下,也为了自己以后方便查看。 也希望有相同兴趣的同学搭个伴,一起学习。更希望得到大牛们的指点和鼓励。完成此课后,我设置
# Python OpenCV 多边形面积 在计算机视觉和图像处理中,OpenCV(Open Source Computer Vision Library)是一个非常强大的库。在许多应用场景中,尤其是在形状分析中,计算多边形的面积是一个非常常见的需求。本文将介绍如何使用Python和OpenCV来计算多边形的面积,并通过代码示例帮助您理解。 ## 什么是多边形及其面积? 多边形是由若干条线
原创 10月前
135阅读
目录前言:本篇学习内容:1.寻找凸包1.1 凸包1.2 寻找凸包2.使用多边形将轮廓包围参考文献: 前言:笔者目前在校本科大二,有志于进行计算机视觉、计算机图形学方向的研究,准备系统性地、扎实的学习一遍OpenCV的内容,故记录学习笔记,同时,由于笔者同时学习数据结构、机器学习等知识,会尽量根据自己的理解,指出OpenCV的应用,并在加上自己理解的前提下进行叙述。 若有不当之处,希望各位批评、指
目录:对像素值进行统计。因为每个像素值的像素是0-255,对每个像素值有多少个像素点进行统计的。图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的。纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比。图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征。上图显然 100+ 像素值的像素是最多的。14个像素点
面积选择区域 select_shape二值化为了减少噪声的干扰,删除面积小的区域,代码中将连通区域面积(像素个数)不足100的区域认为是噪声点,并将其删除(即置为背景黑色)。  #include "stdafx.h" #include <iostream> #include<vector> #include<algorithm> #in
Mat 是 OpenCV 中的数据类型,储存矩阵形式的数据,构造 Mat 类型的方法有很多,都是通过 Mat 这个构造函数进行实现(Mat 也是构造 Mat 数据类型的函数)。本文主要介绍 Mat 的构造方法和 Mat 类的访问以及相关的数据类型。 文章目录1 传统的函数构造1.1 关于 CV_< bits >< type >C(< channels >) 的补
图像通过一定尺寸的矩阵表示,矩阵中每个元素的大小表示图像中每个像素的明暗程度。查找矩阵中的最大值就是寻找图像中灰度值最大的像素,计算矩阵的平均值就是计算图像像素的平均灰度,可以用平均灰度表示图像整体的亮暗程度。因此,针对图像矩阵数据的统计和分析,在图像处理工作中具有非常重要的意义。OpenCV集成了求取图像像素最大值、最小值、均值、标准差等函数,本节将详细介绍这些函数的使用方法。OpenCV提供了
一、直方图均衡化目的:直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。 直方图均衡化方法的基本思想是对在图像中像素个数多的灰度级进行展宽,而对像素个数少的灰度级进行缩减。从而达到清晰图像的目的。函数:cv2.equalizeHist(img)步骤:统计直方图中每个灰度值出现的次数;计算累计归一化直方图;重新计算像素点像素值import cv2 import nump
一、灰度变换灰度变换概述:灰度变换通过扩展输入图像的动态范围以达到图像增强的目的 灰度变换的作用:(1)改善图像的质量,提高图像的对比度 (2)有选择地突出图像感兴趣的特征或抑制图像中不需要的特征 (3)有效地改变图像打的直方图分布,使像素的分布更加均匀1.由加权平均法实现RGB图像转灰度图像加权平均值法公式:D=0.299R+0.587G+0.114*B 其中D表示为点(x,y)转换后的灰度值,
转载 2023-10-27 00:49:29
168阅读
内容有: 均值滤波 cv2.blur(),方框滤波 cv2.boxFilter(),高斯滤波 cv2.GaussianBlur(),中值滤波 cv2.medianBlur()滤波可理解为,平均卷积操作。对于图像上存在的噪声点,通过滤波平滑处理操作,可以去除噪声点。在开始前我们先导入需要用的库文件,获取需要用到的图片。import cv2 # 指定图像所在文件夹位置 f
1、函数 我们知道圆的面积计算公式为:
问题:一张输入图片,图片上有两条平行线,求出这两条平行线之间的距离解决思路:1. 对图像中的直线进行细化2. 提取直线的轮廓坐标3. 对轮廓上的坐标进行直线集合,从而得到直线方程4. 计算两条直线之间的距离图像细化 图像轮廓提取 直线拟合 工具: opencv 2.4.8 + VS2013代码:1.头文件 ProcessImage.h//ProcessImage.h
转载 2024-04-28 19:11:12
52阅读
  • 1
  • 2
  • 3
  • 4
  • 5