因为最近毕设要用到 Gabor 特征提取,所以来总结一下对 Gabor 滤波器的理解,以及在 OpenCV 中的应用。1 对 Gabor 滤波器的理解Fourier 变换是一种信号处理中的有力工具,可以将图像从空域转换到频域,并提取到空域上不易提取的特征。但是 Fourier 变换缺乏时间和位置的局部信息。Gabor 变换是一种加窗短时 Fourier 变换(简单理解起来就是在特定时间窗内做 Fo
OpenCV 学习(几种基本的低通滤波)对图像进行滤波处理是图像处理中最常见的一种操作类型。而这其中低通滤波(也可以叫做平滑)有事各种滤波处理中最常用的。这里就简单写写 OpenCV 中提供的几种低通滤波方法。均值滤波这种滤波方法就是取一个像素的邻域内各像素的平均值作为滤波结果。比如下面这个例子:cv::blur(image, result, cv::Size(7, 7), cv::Point(-
转载
2024-04-14 15:26:44
142阅读
SIFT简介Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(《Object Recognition from Local Scale-Invariant Features》)提出的高效区域检测算法,在2004年(《Distinctive Image Features from Scale-Invariant
首先介绍非局部均值的概念非局部均值(NL-means)作为一项去噪技术,充分利用了图像中的冗余信息,在去噪的同时能最大程度地保持图像的细节特征基本思想是:当前像素的估计值,由图像中与它具有相似邻域结构的像素加权平均得到理论上,该算法需要在整个图像范围内判断像素间的相似度,也就是说,每处理一个像素点时,都要计算它与图像中所有像素点间的相似度。但是考虑到效率问题,在实现的时候,我们会设定两个固定大小的
《世说新语》记载了东晋的一则轶事:在一个寒冷的冬天,时任宰相的谢安,召集了一大家族的人,在和子侄辈们谈论诗文时,忽然飘起了大雪。 谢安有意考考晚辈们,于是就问:"白雪纷纷何所似?" 谢安的侄子答道:"空中撒盐差可拟",而谢安的侄女却说了一句:"未若柳絮因风起"。 &nbs
转载
2023-09-15 20:43:59
99阅读
1.扩充边界void copyMakeBorder(InuptArray src, OutputArray dst, int top , int bottom, int left, int right, int borderType, const Scalar& value=Scalar())该函数是用来扩展一个图像的边界的,第3~6个参数分别为原始图像的上下左右各扩展的像素点的个数,第7
转载
2023-11-09 14:10:28
66阅读
目录前言滤波操作二维滤波(二维卷积)线性滤波方框滤波/均值滤波高斯滤波 前言滤波分为线性滤波和非线性滤波两种,线性滤波中有方框滤波、均值滤波和高斯滤波三种,非线性滤波则有中值滤波和双边滤波两种。在介绍滤波方式之前先以二维滤波的形式介绍滤波的运算。滤波操作二维滤波(二维卷积)用二维滤波的方法选取不同的卷积核可以实现各种不同的效果,虽然OpenCV中内置函数能实现不同的操作,但是通过自己构建卷积核矩
转载
2024-03-19 14:03:07
68阅读
一、常用的基础滤波操作 在图像处理中,尽可能消除图片中的噪声,消除噪声就需要用到滤波,在本次opencv学习中,学习了三个滤波方式。(1)平均滤波,就是将一个区域内的像素值求和取平均值,然后用这个平均值替换区域中心的像素值。blur(源Mat对象,目标Mat对象,Size对象,Point对象)//Size对象用来确定区域大小,Point对象如果x,y都是-1则表示更新区域中心的像素。(2)高斯滤波
转载
2023-12-31 14:38:57
263阅读
滤波处理分为两大类:线性滤波和非线性滤波。OpenCV里有这些滤波的函数,使用起来非常方便,现在简单介绍其使用方法。线性滤波:1.方框滤波:模糊图像2.均值滤波:模糊图像3.高斯滤波:信号的平滑处理,去除符合正太分布的噪声非线性滤波1.中值滤波:去除椒盐噪声2.双边滤波:保边去噪下面对滤波方法进行一一介绍:方框滤波(box Filter) 方框滤波(box
转载
2024-04-25 10:07:19
42阅读
下面是频域滤波示例程序:在本程序中,共有五个自定义函数,分别是:1. myMagnitude(),在该函数中封装了Opencv中的magnitude函数,实现对于复数图像的幅值计算。2. dftshift(),该函数实现对图像四个象限的对角互换,相当于MatLab中 fftshift(),将频谱的原点(0,0)移到图像中心。示例1中采用了该函数实现了频谱图中心化。3. srcCentralized
转载
2023-06-17 17:02:39
144阅读
滤波功能在图像处理方面特别常用,我们这一篇来熟悉openCV滤波的函数,当然我们从概念看起。官网地址:https://docs.opencv.org/master/d7/d37/tutorial_mat_mask_operations.html上一篇:Mat数据的遍历和图像数据操作(如果不熟悉遍历方法的话,看这部分代码会不理解)openCV滤波功能这边官网还是在介绍filter2D函数之前,给我们
转载
2024-01-08 17:03:12
56阅读
一、低通滤波器1、频域、空域 有些图像含有大片强度值几乎不变的区域,而有些图像灰度级的强度值在整幅图像上的变化很大,忽高忽低。由此产生一种描述图像特性的方式,即观察上述变化的频率,这种特征称为频域。通过观察灰度分布来描述图像特征的,称为空域。因为图像是二维的,因此频率有垂直频率和水平频率。2、滤波器 在频域分析的框架下,滤波器是一种放大图像中某些频段,同时滤掉或者减弱其他频段的算子。3、低通滤波器
转载
2024-05-22 20:48:05
88阅读
滤波处理分为两大类:线性滤波和非线性滤波。OpenCV里有这些滤波的函数,使用起来非常方便,现在简单介绍其使用方法。线性滤波:方框滤波、均值滤波、高斯滤波方框滤波#include<opencv2\opencv.hpp>
#include<opencv2\highgui\highgui.hpp>
using namespace std;
using namespace
转载
2024-02-23 08:31:58
56阅读
图像滤波 这一章我们将继续讨论图像的基本操作。将讨论一些滤波理论和一些从图像中提取特征或抑制图像噪声的方法。 图形处理和计算机视觉之间有一条华丽丽的分割线。图形处理主要是通过不同的变换来呈现图形的不同表现。其通常呢,但不总是,是为了”显示”的目的,包括图像色彩空间的转换,锐化或模糊,改变对比
转载
2024-04-22 12:40:55
34阅读
本文主要涉及到五种滤波方法,包括三种线性滤波器和两种非线性滤波器。 1. 线性滤波器 - 方框滤波 - 均值滤波 - 高斯滤波 2. 非线性滤波器 - 中值滤波 - 双边滤波器线性滤波器图像滤波可以表示为如下的公式: g(x,y)=∑k,lf(x+k,y+l)g(k,l) 其中g(k,l)称为核,通过构造核可以实现线性滤波方法方框滤波方框滤波器的核为: α⎡⎣⎢⎢⎢⎢⎢11⋮111
转载
2023-10-08 21:33:29
106阅读
文章目录一. 图像滤波简介① 为什么图像是波?② 图像的频率③ 滤波器二. 低通滤波之线性滤波① 方框滤波② 均值滤波③ 高斯滤波三. 低通滤波之非线性滤波中值滤波① 中值滤波简介② 实现中值滤波③ Opencv自带的中值滤波四. 低通滤波之非线性滤波双边滤波① 双边滤波的简介② 双边滤波的实现③ Opencv自带的双边滤波 一. 图像滤波简介① 为什么图像是波?我们都知道,图像由像素组成.下图
转载
2024-05-08 17:01:49
105阅读
常见滤波函数: 其中前3中为线性滤波,后2中为非线性滤波
转载
2018-09-17 21:01:00
203阅读
2评论
一、概述 图像的傅里叶变换及其两个重要的度量:幅度谱和相位谱。了解两个重要的概念:低频和高频。低频指的是图 的傅里叶变换
“
中心位置
”
附近的区域。注意,如无特殊说明,后面所提到的图像的傅里叶变换都是中心化后的。高频随着到“
中心位置
”
距离的增加而增加,即傅里叶变换中心位置的外围区域,这里的“
中心位置
转载
2024-02-05 15:46:12
102阅读
图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。 图像滤波既可以在时域进行,也可以在频域进行。图像滤波可以更改或者增强图像。通过滤波,可以强调一些特征或者去除图像中一些不需要的部分
转载
2023-12-02 13:59:07
98阅读
基本概念滤波实际上是信号处理的一个概念,图像可以看成一个二维信号,其中像素点 灰度值得高低代表信号的强弱高频:图像中变化剧烈的部分 低频:图像中变化缓慢,平坦的部分根据图像高低频特性,设置高通和低通滤波器 高通滤波可以检测图像中尖锐、变化明显的地方; 低通滤波可以让图像变得平滑,消除噪声干扰图像滤波是OpenCV图像处理的重要部分,在图像预处理方面应用广泛,图像 滤波的好坏决定着后续处理
转载
2024-01-03 13:55:32
27阅读