《世说新语》记载了东晋的一则轶事:在一个寒冷的冬天,时任宰相的谢安,召集了一大家族的人,在和子侄辈们谈论诗文时,忽然飘起了大雪。

    谢安有意考考晚辈们,于是就问:"白雪纷纷何所似?" 谢安的侄子答道:"空中撒盐差可拟",而谢安的侄女却说了一句:"未若柳絮因风起"。

    

python opencv 滤波 opencv lee滤波_OpenCV

    

python opencv 滤波 opencv lee滤波_邻域_02

    

python opencv 滤波 opencv lee滤波_OpenCV_03

    

    回到现在,从图像处理的角度来看,无论是白雪、柳絮还是空中撒的盐,都可视为 "椒盐噪声",因此,就引出了消除这些噪声的方法 - 图像滤波

 

1  图像滤波

    图像滤波,也称图像平滑或图像模糊化,是图像处理中最简单、最常用的一种运算,

最简单和是一种图像空间滤波方法 (低通滤波),可对图像进行去噪 或 模糊化 (blurring)

  以 3X3 的滤波器为例 (即 a=b=1),则矩阵 Mx 和 Mf 对应的元素乘积之和,就是 g(x, y)

  其中,$ M_x = \begin{bmatrix} w(-1,-1) & w(-1,0) & w(-1,1) \\ w(0,-1) & w(0,0) & w(1,1) \\ w(1,-1) & w(1,0) & w(1,1) \\ \end{bmatrix} $

             $ M_f = \begin{bmatrix} f(x-1,y-1) & f(x-1,y) & f(x-1,y+1) \\ f(x,y-1) & f(x,y) & f(x+1,y+1) \\ f(x+1,y-1) & f(x+1,y) & f(x+1,y+1) \\ \end{bmatrix}$

 

均值 -> 中值 高斯 双边

2  OpenCV 函数

    OpenCV 中的四个函数分别为:均值滤波 blur()、高斯滤波 GaussianBlur()、中值滤波 medianBlur()、双边滤波 bilateralFilter()

2.1  均值滤波

先 blur 后 boxFilter??

 2.1.1 boxFilter

 输出图像的任一像素灰度值,等于其所有邻域像素灰度值的平均值

  模糊化核为,$ K = \alpha \begin{bmatrix}  1 & 1 & ... & 1 & 1 \\ 1 & 1 & ... & 1 & 1 \\ \: & \: & ... & & & \\ 1 & 1 & ... & 1 & 1 \end{bmatrix} $  其中,$\alpha = \begin{cases} \dfrac{1}{ksize.width * ksize.height} & \text{when normalize = true} \\  1 & \text{otherwise} \\ \end{cases} $

void cv::boxFilter (     
    InputArray   src, // 输入图像
    OutputArray  dst, // 输出图像
    int    ddepth,      // 输出图像深度,-1 表示等于 src.depth()
    Size   ksize,       // 模糊化核 (kernel) 的大小
    Point  anchor = Point(-1,-1),       // 锚点位置,缺省值表示 anchor 位于模糊核的正中心
    bool   normalize = true,            // 是否归一化处理
    int    borderType = BORDER_DEFAULT  // 边界模式
)

2.1.2  blur

  取 ddepth = -1,normalize = true,则可由 boxFilter 得到模糊化函数 (blur)

boxFilter( src, dst, -1, ksize, anchor, true, borderType );

  blur 本质上是一个输入和输出图像深度 (ddepth) 相同,并且做归一化处理的盒式滤波器

void cv::blur (    
    InputArray  src,  
    OutputArray dst,      
Size ksize,      
    Point anchor = Point(-1,-1),    
    int borderType = BORDER_DEFAULT  
)

2.2  高斯滤波

    高斯滤波最为有用,它是根据当前像素和邻域像素之间,空间距离的不同,计算得出一个高斯核 (邻域像素的加权系数)

    然后,高斯核从左至右、从上到下遍历输入图像,与输入图像的像素值求卷积和,得到输出图像的各个像素值

    $\quad G_{0}(x, y) = A e^{ \dfrac{ -(x - \mu_{x})^{2} }{ 2\sigma^{2}_{x} } + \dfrac{ -(y - \mu_{y})^{2} }{ 2\sigma^{2}_{y} } } $

    无须理会公式的复杂,只需要记住一点即可:邻域像素距离当前像素越远 (saptial space),则其相应的加权系数越小

    为了便于直观理解,可看下面这个一维高斯核,推而广之将 G(x) 曲线以 x=0 这条轴为中心线,旋转360度可想象其二维高斯核

      

python opencv 滤波 opencv lee滤波_邻域_04

void GaussianBlur ( 
    InputArray   src, 
    OutputArray  dst,
    Size    ksize,       // 高斯核大小
    double  sigmaX,      // 高斯核在x方向的标准差
    double  sigmaY = 0,  // 高斯核在y方向的标准差,默认为 0,表示 sigmaY == sigmaX
    int     borderType = BORDER_DEFAULT 
)

    注意:高斯核大小 Size(width, height),w 和 h 不必相同但必须是奇数,若都设为 0,则通过 sigma 自动计算核大小

2.3  双边滤波

  上面三种方法都是低通滤波,因此在消除噪声的同时,也常会将边缘信息模糊化。双边滤波和高斯滤波类似,但是它将邻域像素的加权系数分为两部分,

  第一部分与高斯滤波的完全相同,第二部分则考虑当前像素和邻域像素之间灰度值的差异,从而在消除噪声的基础上,也较好的保留了图像的边缘信息

void cv::bilateralFilter (
    InputArray    src,
    OutputArray   dst,
    int     d,    // 像素邻域直径,若为非正值,则从 sigmaSpace 自动计算得出
    double  sigmaColor,  // 颜色空间的标注方差
    double  sigmaSpace,  // 坐标空间的标准方差
    int     borderType = BORDER_DEFAULT 
)

   注意 1)  双边滤波相比以上三种滤波方法,其处理速度很慢,因此,一般建议取 d=5 用于实时图像处理,d=9 适合于非实时的图像领域

   注意 2)  sigmaColor 和 sigmaSpace 可取相同值,一般在 10 ~ 150 之间,小于 10,则没什么效果,大于 150,则效果太强烈,看起来明显“卡通化”

2.4  中值滤波(非线性)

    图像中像素点 (x,y),经过中值滤波后,像素值 g(x, y) 等于以 (x, y) 为中心点的邻域像素的 "中值",也即按顺序排列的一组像素值中居于中间位置的值

椒盐噪声,OpenCV 的中值滤波函数 medianBlur() 定义如下:

 

void medianBlur ( 
      InputArray   src,
      OutputArray  dst,
      int         ksize  // 滤波核大小,一般为奇数且大于1,如 3, 5, 7, ...
  )

 

 

3  代码示例

3.1 OpenCV

  OpenCV 中的示例,通过逐渐增大像素邻域的大小 Size(w, h),将上述滤波过程动态化,非常形象的展示了邻域大小对滤波效果的影响

 

1 /**
  2  * file Smoothing.cpp
  3  * brief Sample code for simple filters
  4  * author OpenCV team
  5  */
  6 #include <iostream>
  7 #include <vector>
  8 
  9 #include "opencv2/imgproc/imgproc.hpp"
 10 #include "opencv2/imgcodecs.hpp"
 11 #include "opencv2/highgui/highgui.hpp"
 12 #include "opencv2/features2d/features2d.hpp"
 13 
 14 using namespace std;
 15 using namespace cv;
 16 
 17 /// Global Variables
 18 int DELAY_CAPTION = 1500;
 19 int DELAY_BLUR = 100;
 20 int MAX_KERNEL_LENGTH = 31;
 21 
 22 Mat src; Mat dst;
 23 char window_name[] = "Smoothing Demo";
 24 
 25 /// Function headers
 26 int display_caption( const char* caption );
 27 int display_dst( int delay );
 28 
 29 
 30 /**
 31  * function main
 32  */
 33 int main( void )
 34 {
 35   namedWindow( window_name, WINDOW_AUTOSIZE );
 36 
 37   /// Load the source image
 38   src = imread( "../data/lena.jpg", 1 );
 39 
 40   if( display_caption( "Original Image" ) != 0 ) { return 0; }
 41 
 42   dst = src.clone();
 43   if( display_dst( DELAY_CAPTION ) != 0 ) { return 0; }
 44 
 45 
 46   /// Applying Homogeneous blur
 47   if( display_caption( "Homogeneous Blur" ) != 0 ) { return 0; }
 48 
 49   for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
 50       { blur( src, dst, Size( i, i ), Point(-1,-1) );
 51         if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
 52 
 53 
 54   /// Applying Gaussian blur
 55   if( display_caption( "Gaussian Blur" ) != 0 ) { return 0; }
 56 
 57   for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
 58       { GaussianBlur( src, dst, Size( i, i ), 0, 0 );
 59         if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
 60 
 61 
 62   /// Applying Median blur
 63   if( display_caption( "Median Blur" ) != 0 ) { return 0; }
 64 
 65   for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
 66       { medianBlur ( src, dst, i );
 67         if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
 68 
 69 
 70   /// Applying Bilateral Filter
 71   if( display_caption( "Bilateral Blur" ) != 0 ) { return 0; }
 72 
 73   for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
 74       { bilateralFilter ( src, dst, i, i*2, i/2 );
 75         if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
 76 
 77   /// Wait until user press a key
 78   display_caption( "End: Press a key!" );
 79 
 80   waitKey(0);
 81 
 82   return 0;
 83 }
 84 
 85 /**
 86  * @function display_caption
 87  */
 88 int display_caption( const char* caption )
 89 {
 90   dst = Mat::zeros( src.size(), src.type() );
 91   putText( dst, caption,
 92            Point( src.cols/4, src.rows/2),
 93            FONT_HERSHEY_COMPLEX, 1, Scalar(255, 255, 255) );
 94 
 95   imshow( window_name, dst );
 96   int c = waitKey( DELAY_CAPTION );
 97   if( c >= 0 ) { return -1; }
 98   return 0;
 99 }
100 
101 /**
102  * @function display_dst
103  */
104 int display_dst( int delay )
105 {
106   imshow( window_name, dst );
107   int c = waitKey ( delay );
108   if( c >= 0 ) { return -1; }
109   return 0;
110 }

View Code

3.2  滤波对比

  实际中,可直接调用以上四个滤波函数,代码如下:

1 #include "opencv2/imgproc/imgproc.hpp"
 2 #include "opencv2/highgui/highgui.hpp"
 3 
 4 using namespace cv;
 5 
 6 int main()
 7 {
 8     Mat src = imread("E:/smooth/bird.jpg");
 9     if(src.empty()) {
10         return -1;
11     }
12     imshow("original", src);
13 
14     Mat dst;
15 
16     blur(src, dst, Size(3,3));
17     imshow("blur", dst);
18 
19     medianBlur(src,dst,3);
20     imshow("medianBlur",dst);
21 
22     GaussianBlur(src,dst,Size(3,3),0);
23     imshow("GaussianBlur",dst);
24 
25     bilateralFilter(src,dst,9,50,50);
26     imshow("bilateralFilter",dst);
27 
28     waitKey(0);
29 }

  四种滤波方法的效果图,如下所示:

 

python opencv 滤波 opencv lee滤波_邻域_05

参考资料

 《Digital Image Processing》 4th, ch3

 《Learning OpenCV3》

 OpenCV Tutorials \ Image Processing (imgproc module) \ Smoothing Images

 图像卷积与滤波的一些知识点,zouxy09