目标 • 学习不同的形态学操作,例如腐蚀,膨胀,开运算,闭运算等
• 我们要学习的函数有:cv2.erode(),cv2.dilate(),cv2.morphologyEx()等 原理 形态学操作是根据图像形状进行的简单操作。一般情况下对二值化图像进行的操作。需要输入两个参数,一个是原始图像,第二个被称为结构化元素或核,它是用来决定操作的性质的。两个基本的形态学操作是腐蚀和膨胀。他们的变体构成了
转载
2024-02-25 04:59:36
32阅读
腐蚀与膨胀 腐蚀和膨胀是图像的形态学处理中最基本的操作,之后遇见的开操作和闭操作都是腐蚀和膨胀操作的结合运算。腐蚀和 膨胀的应用广泛,而且效果也很好。 我们先来谈谈腐蚀与膨胀的原理: 对于二值图像: 从图像处理角度看,二值图像的腐蚀和膨胀就是将一个小型二值图(结构元素,一般为3*3大小)在一个大的二值图上逐点移动并进行比较,根据比较的结果作出相应处理而已。 膨胀算法:用3X3的结构元素,扫
转载
2024-03-01 14:10:34
34阅读
形态变换是一些基于图像形状的简单操作。通常在二进制图像上执行。它需要两个输入,一个是我们的原始图像,第二个是决定操作性质的结构元素或内核。两种基本的形态学算子是侵蚀和膨胀。然后,它的变体形式(如“打开”,“关闭”,“渐变”等)也开始起作用
二值形态学
一、腐蚀 对图像的边缘进行侵蚀,原始图像中的一个像素(无论是1还是0)只有当内核下的所有像素都是1时才被认为是1,否则它就会被侵蚀
转载
2024-03-20 15:05:19
149阅读
图像处理中的形态学主要指数学形态学:是一门建立在格论和拓扑学基础之上的图像分析学科。形态学操作就是基于形状的一系列图像处理操作,基本运算包括:二值腐蚀和膨胀、二值开闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学滤波、Top-hat变换、颗粒分析、流域变换、灰值腐蚀和膨胀、灰值开闭运算、灰值形态学滤波等。腐蚀和膨胀–erode函数和dilate函数主要功能:
* 消除噪声
* 分割出独立
转载
2024-04-23 07:58:48
14阅读
前言 膨胀就是对图中的每个像素取其核范围内最大的那个值,腐蚀就相反。这两个操作常用来突出显示图的某个高亮部分或者昏暗部分以及去噪。本文展示两个分别对图像进行膨胀和腐蚀的例子。膨胀和腐蚀函数 cvErode() 和 cvDilate() 函数原型:1 // 膨胀函数
2 void cvcvDilate (
3 IplImage *src, //
转载
2024-05-02 23:04:38
157阅读
图像的腐蚀过程与图像的卷积操作类似,都需要模板矩阵来控制运算的结果,在图像的腐蚀和膨胀中这个模板矩阵被称为结构元素。与图像卷积相同,结构元素可以任意指定图像的中心点,并且结构元素的尺寸和具体内容都可以根据需求自己定义。定义结构元素之后,将结构元素的中心点依次放到图像中每一个非0元素处,如果此时结构元素内所有的元素所覆盖的图像像素值均不为0,则保留结构元素中心点对应的图像像素,否则将删除结构元素中心
Python OpenCV实例:图像腐蚀(数学公式基本实现)Python OpenCV实例:图像腐蚀(数学公式基本实现)#coding:utf-8'''二值图像的腐蚀运算定义:g(x,y) = erode[f(x,y),B] = AND[Bf(x,y)]其中,g(x,y)为腐蚀后的二值图像,f(x,y)为原始二值图像B为结构元素,Bf(x,y)定义为Bf(x,y) = {f(x - bx,y-by
二值图像的腐蚀和膨胀图像数字处理中应用相当广泛,代码处理也很简单,只不过一些资料在介绍腐蚀和膨胀原理时,用一些形态学、集合上的概念和术语,搞得也有些”高深莫测“了。 从图像处理角度看,二值图像的腐蚀和膨胀就是将一个小型二值图(结构元素,一般为3*3大小)在一个大的二值图上逐点移动并进行比较,根据比较的结果作出相应处理而已。
上级目录表示方法: …/#include <vector>
#include <stdio.h>
#include<opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main()
{
Mat Img = imread("../picture/pic.jpg");
imshow
原创
2023-05-28 00:44:30
75阅读
形态学操作其实就是改变物体的形状,比如腐蚀就是"变瘦",膨胀就是"变胖",看下图就明白了:形态学操作一般作用于二值化图(也可直接作用于原图),来连接相邻的元素或分离成独立的元素。腐蚀和膨胀是针对图片中的白色部分!腐蚀腐蚀的效果是把图片"变瘦",其原理是在原图的小区域内取局部最小值。因为是二值化图,只有0和255,所以小区域内有一个是0该像素点就为0:这样原图中边缘地方就会变成0,达到了瘦身目的&n
一、图像腐蚀形态学是图像处理中常见的名词,图像处理的形态学基本属于数学形态学的范畴,是一门建立在格论和拓扑学基础上的图像分析学科。腐蚀操作是其中最基本的一种运算。 简单来说,腐蚀就是通过一个蒙版进行图像像素值的修改。针对某一像素点,以其为中心建立蒙版,蒙版中的最小值赋值给该像素点,这就实现了腐蚀操作;当处理二值化图像时,图像只有0和255的数值,如果某一灰度
转载
2024-01-15 00:34:45
130阅读
形态学处理(一)1、腐蚀、膨胀操作 膨胀 简单来讲,膨胀操作就是选定窗口大小,然后在原图上滑动,窗口中心点的取值为窗口内所有像素点的最大值。下给出过程图,个人认为下图比上面的解释图更为通俗易懂。对单个像素的膨胀操作如下: (1)请把下图看做是方格纸,黑色部分也是,第一张图为对像素(1,1)进行膨胀操作,红色框为选取的核大小:(2)第二张图为对像素(2,2)进行膨胀操作
转载
2024-04-06 20:46:33
141阅读
一、形态学操作就是基于形状的一系列图像处理操作。有很多的,这里先看最简单的操作。 膨胀与腐蚀(Dilation与Erosion)。能实现多种多样的功能,主要如下: 消除噪声,通过低尺寸结构元素的腐蚀操作很容易去掉分散的椒盐噪声点分割(isolate)出独立的图像元素,在图像中连接(join)相邻的元素。寻找图像中
转载
2024-01-28 06:07:56
119阅读
Mat dilateimg; Mat element = getStructuringElement(MORPH_RECT, Size(3, 3)); dilate(canny, dilateimg, element); erode(dilateimg, dilateimg,element); im
原创
2022-05-29 01:17:54
173阅读
在计算机视觉及图像处理领域,JavaCV 和 OpenCV 提供了一系列强大的功能,而“腐蚀”操作则是其中的重要图像变换之一。腐蚀操作可以有效地去除噪声,增强特征,是图像处理中的基础步骤之一。本文将专注于如何使用 JavaCV 和 OpenCV 实现“腐蚀”操作,并从环境配置到生态集成为您详细讲解整个过程。
## 环境配置
首先,确保我们有一个合适的开发环境。以下是配置环境的基本流程图。
`
腐蚀与膨胀(Eroding and Dilating) 目标本文档尝试解答如下问题:如何使用OpenCV提供的两种最基本的形态学操作,腐蚀与膨胀( Erosion 与 Dilation):
erodedilate 原理 Note以下内容于Bradski和Kaehler的大作: Learning OpenCV . 形态学操作简单来讲,形态学操作就是基于形
一、引言关于图像的腐蚀和膨胀,网上介绍的资料非常多,老猿也看了很多,总体来说主要偏向于就使用OpenCV腐蚀和膨胀函数的应用,另外原理介绍的有一小部分,对于初学者有很多的帮助,但如果想知其所以然则总体来说是不够的。从《OpenCV-Python常用图像运算:加减乘除幂开方对数及位运算:/article/details/108879397》这篇博文发布到现在,老猿花了较多的时间针对腐蚀和膨胀的原理以
1、什么是膨胀与腐蚀 膨胀与腐蚀属于形态学范围,具体的含义根据字面意思来理解即可。但是更形象的话就是“增肥”与“减肥”。处理缺陷问题; + 腐蚀用来处理毛刺问题。 膨胀就是把缺陷给填补了,腐蚀就是把毛刺给腐蚀掉了。这里其实说的并不严谨,也是为了大家理解方便。下面我们就用实例来进行演示。2、形态学处理——膨胀程序实现: 毛刺。而且还包含字体中还包含一些小的间隙(缺陷
转载
2024-08-12 10:14:51
63阅读
1、形态学概述形态学操作就是基于形状的一系列图像处理操作。OpenCV为进行图像的形态学变换提供了快捷、方便的函数。最基本的形态学操作有二种,他们是:膨胀与腐蚀(Dilation与Erosion)。 主要功能如下:消除噪声分割(isolate)出独立的图像元素,在图像中连接(join)相邻的元素。寻找图像中的明显的极大值区域或极小值区域求出图像的梯度膨胀就是图像中的高亮部分(白色部分)进行膨胀,“
转载
2024-03-16 03:07:53
52阅读
图像腐蚀与膨胀概念:图片的腐蚀和膨胀是针对图片中白色部分(高亮部分)而言的,而不是黑色部分。腐蚀就是原图中的高亮部分被腐蚀,“领域被蚕食”,效果图拥有比原图更小的高亮区域。而膨胀就是将图像中的高亮部分进行膨胀,“领域扩张”,效果图拥有比原图更大的高亮区域。1、膨胀:核心解读:膨胀就是求局部最大值的操作。区域B与区域A卷积,即是计算区域B覆盖的区域的像素点最大值(即白色),并且将这个最大值赋值给参考
转载
2024-04-09 07:25:18
57阅读