opencv是一个很强大的机器视觉库,利用它我们可以开发出丰富多彩的使用项目。近日,我在研究一个图中物体定位系统。本程序用的是OpenCV2.4.9,附带OpenCV3.0。程序中的原图为我随手拍的一张图片图中有三个物体,都是蓝色的,我首先取原图的蓝色通道变为灰度图灰度图经过中值滤波后可以得到去噪后的图片根据原图的蓝色通道和红色通道的大概取值范围,我们可得到比较满意的二值图为了去掉物体中少量的黑色
好久没写了,最近在做一个教授给的任务,任务要求就是使用华硕的Xtion pro 这个设备(和微软的Kinect差不多)来识别一个一个的小机器人的位置和角度。做之前什么都不知道,上网查了好多资料,但是中文的资料较少,所以写点东西出来一是给自己记录,而是方便以后研究这个东西的童鞋。首先介绍一下思路:Aruco是一个做显示增强技术的库,但是我只要它的识别坐标和角度的功能OPENNI2 相当于是个驱动
 主题  本章我们要学习的是运动物体的跟踪,现代图像处理中经典的几种跟踪方法主要是:meanshift(均值漂移),Camshift(meanshift的优化版本),KCF,光流法等。   我们本章主要介绍的是前两种,meanshift(均值漂移)以及Camshift(meanshift的优化版本)均值漂移  首先我们需要了解什么是均值漂移,该算法是一种寻找概率函数离散样本的最大密度区域
OpenCV单目视觉定位(测量)系统The System of Vision Location with Signal CameraAbstract:This passage mainly describes how to locate with signalcamera,which bases on OpenCV library.Key words: OpenCV; Locate;Signalc
# Python OpenCV 物体定位的基础介绍 随着计算机视觉技术的快速发展,物体定位(Object Detection)已成为一个重要的研究领域。在很多应用中,例如自动驾驶、安防监控和人机交互,物体定位都是至关重要的技术。本文将深入探讨如何使用 Python 的 OpenCV 库来实现物体定位,并提供一些代码示例,以帮助读者掌握基本的方法和技巧。 ## 1. OpenCV 概述 Ope
原创 2024-08-04 05:30:50
391阅读
简介本篇讲解opencv video鼠标选中的物体跟踪,使用的是opencv提供的calcOpticalFlowPyrLK。calcOpticalFlowPyrLK介绍void calcOpticalFlowPyrLK(InputArray prevImg, InputArray nextImg, InputArray prevPts, InputOutputArray nextPts,
转载 2024-03-24 20:11:47
505阅读
作者:ziguangzeng 在上一节提到了Lucas-Kanade光流跟踪算法,是一种准确,成熟,比较容易实现的物体跟踪算法,对画面中固定点会进行准确快速的跟踪。但是在视频中如何对移动物体进行跟踪以及跟踪点的选择,则是另一个需要解决的问题。下面我们来详细了解一下。cvAbsDiff来计算出,我们可以通过定位这个区域来设置需要跟踪的点。这个运动的区域我们可以通过OpenCV
前言定位二维码不仅仅是为了识别二维码;还可以通过二维码对图像进行水平纠正以及相邻区域定位定位二维码,不仅需要图像处理相关知识,还需要分析二维码的特性,本文先从二维码的特性讲起。 1 二维码特性二维码在设计之初就考虑到了识别问题,所以二维码有一些特征是非常明显的。二维码有三个“回“”字形图案,这一点非常明显。中间的一个点位于图案的左上角,如果图像偏转,也可以根据二维码来纠正。思考题:为什
转载 2024-04-25 12:30:35
21阅读
什么是目标追踪在视频后续帧中定位一个物体,称为追踪。虽然定义简单,但是目标追踪是一个相对广义的定义,比如以下问题 也属于目标追踪问题:稠密光流:此类算法用来评估一个视频帧中的每个像素的运动向量稀疏光流:此类算法,像Kanade-Lucas-Tomashi(KLT)特征追踪,追踪一张图片中几个特征点的位置Kalman Filtering:一个非常出名的信号处理算法基于先前的运动信息用来预测运动目标的
1 Meanshift原理meanshift算法,其本质还是一种梯度下降法求最值方法。我认为可以这样表述,我们在取一个点(比如区域的某个角)作为区域的代表,将区域与目标相似程度数值化(或者机器学习中,将此点一定大小范围内匹配点的数目),作为这点的值,这样在图像上就可以形成坐标的xy的标量场,这样再利用梯度沿着相似程度上升的方向移动,这大概是就是算法原理。  在目标追踪中描述这个算法,我在
利用轮廓检测,我们可以检测出目标的边界,并容易地定位。它通常是许多有趣应用,如图像前景提取,简单图像分割,检测和识别。轮廓线在计算机视觉中的应用一些非常酷的应用程序已经建立,使用轮廓进行运动检测或分割。下面是一些例子:运动检测: 在监控视频中,运动检测技术的应用非常广泛,包括室内外安全环境、交通控制、体育活动中的行为检测、无人值守物体检测,甚至视频压缩等。在下面的图中,可以看到在视频流中检测人的
最近研究图像边界跟踪的相关算法,看了一些论文,得到一些相关的算法知识,与大家分享。Square算法为了提取图案的边界,首先,对给定的数字图像,即在网格平面白像素背景上的一组黑色像素,我们需要找到一个黑色边界像素,并把它作为跟踪的“开始”点。算法将从该“开始”点出发来完成对边界的跟踪。具体过程如下:(1)每当发现自己站在一个黑色的像素,则向左进入相邻的像素; (2)每当发现自己站在一个白色像素,就右
文章目录声明正文1.明确任务2.需要用到的函数3.完整代码4.另外感谢观看! 声明声明:本系列博客是我在学习OpenCV官方教程中文版(For Python)(段力辉 译)所做的笔记。所以,其中的绝大部分内容引自这本书,博客中的代码也是其配套所附带的代码或书中的代码,侵删。其中部分代码可能会因需要而改动。在本系列博客中,其中包含书中的引用,也包括我自己对知识的理解,思考和总结。本系列博客的目的主
首先,我们来开一下计算机是如何检测边缘的。以灰度图像为例,它的理论基础是这样的,如果出现一个边缘,那么图像的灰度就会有一定的变化,为了方便假设由黑渐变为白代表一个边界,那么对其灰度分析,在边缘的灰度函数就是一个一次函数y=kx,对其求一阶导数就是其斜率k,就是说边缘的一阶导数是一个常数,而由于非边缘的一阶导数为零,这样通过求一阶导数就能初步判断图像的边缘了。通常是X方向和Y方向的导数,也就是梯度。
OpenCV中处理从表格切割下来的图片,并去掉单元格的边框线,以提升Tesseract的识别准确率,确实是一个具有挑战性的任务。在这种情况下,我们需要采取一种策略来预处理图像,使得数字与背景之间的对比度增强,同时减少或消除边框线的影响。一种可能的方法是尝试结合图像处理和机器视觉技术,通过以下步骤来实现:1. **图像预处理**:首先,对图像进行预处理,以减少噪声和增强对比度。这可能包括灰度化、二
今天开始接触目标跟踪参考有道翻译一、Object Tracking1.物体跟踪就是在连续的视频帧中定位一个物体。这个定义听起来直截了当,但在计算机视觉和机器学习中,跟踪是一个非常广泛的术语,它包含概念上相似但技术上不同的概念。例如,以下所有不同但相关的思想通常在对象跟踪下研究:(1)稠密光流(Dense Optical flow DOF):这些算法有助于估计视频帧中每个像素的运动矢量。(2)稀疏光
转载 2024-02-29 11:18:41
278阅读
目录摘要一、引言二、Canny方法三、Devernay的亚像素校正四、Devernay算法的精度分析五、改进的亚像素方案六、边点链(Edge Point Chaining)七、算法八、计算复杂度九、优点和局限性十、总结摘要该文章描述了一种产生亚像素精度链状边缘点的图像边缘检测器。该方法结合了经典的Canny和Devernay算法的主要思想。分析表明,对原始公式稍加修改可以提高边缘点的亚像素精度。一
传奇开心果短博文系列系列短博文目录Python的OpenCV库技术点案例示例短博文系列短博文目录一、项目目标 二、OpenCV物体检测与识别介绍三、分别示例代码四、扩展示例代码系列短博文目录Python的OpenCV库技术点案例示例短博文系列短博文目录一、项目目标物体检测与识别:包括人脸识别、目标检测、目标跟踪等功能。OpenCV二、OpenCV物体检测与识别介绍OpenCV(Open
数字图像处理实验内容边缘检测:本次实验,我一共使用了三种方法进行边缘检测,分别是使用sobel算子进行基本边缘检测,Marr-Hildreth边缘检测算法,以及Canny边缘检测算法.其中Marr-Hildreth算法可能由于个人实现的问题在给定的这组图片集上表现不佳,故在此只对另外两种方法进行分析Sobel算子基本边缘检测 (BasicEdgeDetection.m)基本边缘检测的思想很简单,只
本章我们看下Pavlidis细化算法,参考资料http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/theo.htmlComputer VisiAlgorithms in Image Algebra,second edition 该
  • 1
  • 2
  • 3
  • 4
  • 5