opencv是一个很强大的机器视觉库,利用它我们可以开发出丰富多彩的使用项目。近日,我在研究一个图中物体定位系统。本程序用的是OpenCV2.4.9,附带OpenCV3.0。程序中的原图为我随手拍的一张图片图中有三个物体,都是蓝色的,我首先取原图的蓝色通道变为灰度图灰度图经过中值滤波后可以得到去噪后的图片根据原图的蓝色通道和红色通道的大概取值范围,我们可得到比较满意的二值图为了去掉物体中少量的黑色
简介本篇讲解opencv video鼠标选中的物体跟踪,使用的是opencv提供的calcOpticalFlowPyrLK。calcOpticalFlowPyrLK介绍void calcOpticalFlowPyrLK(InputArray prevImg, InputArray nextImg, InputArray prevPts, InputOutputArray nextPts,
转载 2024-03-24 20:11:47
505阅读
利用轮廓检测,我们可以检测出目标的边界,并容易地定位。它通常是许多有趣应用,如图像前景提取,简单图像分割,检测和识别。轮廓线在计算机视觉中的应用一些非常酷的应用程序已经建立,使用轮廓进行运动检测或分割。下面是一些例子:运动检测: 在监控视频中,运动检测技术的应用非常广泛,包括室内外安全环境、交通控制、体育活动中的行为检测、无人值守物体检测,甚至视频压缩等。在下面的图中,可以看到在视频流中检测人的
前言定位二维码不仅仅是为了识别二维码;还可以通过二维码对图像进行水平纠正以及相邻区域定位定位二维码,不仅需要图像处理相关知识,还需要分析二维码的特性,本文先从二维码的特性讲起。 1 二维码特性二维码在设计之初就考虑到了识别问题,所以二维码有一些特征是非常明显的。二维码有三个“回“”字形图案,这一点非常明显。中间的一个点位于图案的左上角,如果图像偏转,也可以根据二维码来纠正。思考题:为什
转载 2024-04-25 12:30:35
21阅读
作者 | 李秋键今天我们将利用python+OpenCV实现对视频中物体数量的监控,达到视频监控的效果,比如洗煤厂的监控水龙头的水柱颜色,当水柱为黑色的超过了一半,那么将说明过滤网发生了故障。当然不仅如此,我们看的是图像视频处理的技巧,你也可以将项目迁移到其他地方等,这仅仅是一个例子而已。我们知道计算机视觉中关于图像识别有四大类任务:分类-Classification:解决“是什么?”的问题,
文章目录前言一、物体识别算法原理概述1、物体识别的概念2、Yolo算法原理概述二、opencv调用darknet物体识别模型(yolov3/yolov4)1、darknet模型的获取2、python调用darknet模型实现物体识别3、LabVIEW调用darknet模型实现物体识别yolo_example.vi4、LabVIEW实现实时摄像头物体识别(yolo_example_camera.v
前言:opencv中没有matlab中能够在同一窗口中显示多幅图像的函数,需要我们去自实现。一.实现需要的关键函数:VA_LISTVA_LIST是在C语言中解决变参问题的一组宏,所在头文件:#include <stdarg.h>,用于获取不确定个数的参数。 使用方法: (1)首先在函数里定义一具VA_LIST型的变量,这个变量是指向参数的指针; (2)然后用VA_START宏初始化刚定
目标检测技术作为计算机视觉的基础任务之一,在过去几十年取得了显著的进步,尤其近几年,随着深度学习的发展,基于深度神经网络的标准正框目标检测方法迅速取代了传统方法,成为智能安防、家居、出行等领域不可或缺的关键技术,比如人脸检测、人体检测、车辆检测、通用物体检测等。然而,还有一些场景的目标普遍带有任意旋转的多角度并且呈现密集排列,普通正框检测的方法无法满足需求,比如遥感目标检测、货架商品
1.windows系统下需要编译安装opencv3.4(注意opencv4.1没有分类器)遇到windows下的opencv编译问题参考:windows7+vs2019编译opencv注意:本机编译的opencv_createsamples.exe程序和opencv_traincascade.exe程序只有通过本机编译才能在本机正常使用。2.然后按照这个教程执行:opencv实时识别指定物体注意:
本文作者:小嗷 例如,在上面的图片中,你可以看到,汽车的镜子只不过是一个包含了像素点的所有强度值的矩阵。我们如何获取和存储像素值可能根据我们的需要而变化,但最终,计算机世界中的所有图像都可能被简化为数字矩阵和描述矩阵本身的其他信息。OpenCV是一个计算机视觉库,它的主要焦点是处理和操作这些信息。因此,您需要熟悉的第一件事是OpenCV如何存储和处理图像。MatOpenCV自2001年以来就一直存
数字图像与机器视觉--基于python+opencv识别硬币和细胞数量以及条形码检测一、用奇异值分解(SVD)对一张图片进行特征值提取(降维)处理奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。具体代码如下import numpy as np imp
转载 2023-08-17 16:14:26
714阅读
尺度不变特征核心是不同尺度拍摄的两幅图像的同一个物体,对应的两个theta比率等于拍摄两幅图像的尺度的比率。而OpenCV提供的SIFT和Surf正是利用尺度不变性就行特征点检测的代表。它们的原理可以参考本文的参考文献,写的很详细,本来想在这里介绍下它们的原理的,但是看到参考的blog中写的太好了,我不能写的这么清楚,就省去了。使用起来也很方便,比如利用Sift找到匹配物体代码如下:int mai
转载 2024-01-12 11:09:50
179阅读
前言:    第一种方法是人脸检测中最常用的是Haar-Adaboost算法,该算法首先在人脸检测中得到广泛运用,而后也被用于其它有关目标检测中。adaboost 是一套机器学习的框架,根据给出的正样本和副样本训练一个用于识别正样本一类物体的模型。这个模型的本质就是分类器,又叫做级联(cascade)分类器。本文主要是学习使用OpenCV自带的adaboost+haar特征程序
 主题  本章我们要学习的是运动物体的跟踪,现代图像处理中经典的几种跟踪方法主要是:meanshift(均值漂移),Camshift(meanshift的优化版本),KCF,光流法等。   我们本章主要介绍的是前两种,meanshift(均值漂移)以及Camshift(meanshift的优化版本)均值漂移  首先我们需要了解什么是均值漂移,该算法是一种寻找概率函数离散样本的最大密度区域
转载 2024-03-01 14:49:16
122阅读
一、前言   最初想写这篇文章就是想帮助和我一样的热心于图像处理的初学者尽快掌握SVM。通过自学毛星云编著的《Opencv3编程入门》一书,并亲自一个一个地码上所有的示例代码,做了一个项目后,算是真正地入门图像处理领域了吧,但也仅仅是入门。      学海无涯,愿每个对图像处理,甚至机器人学感兴趣的人都能保持初心,勇往直前。      本文工程基于Opencv2.4.9和vs2010搭建。而本文也
转载 2024-03-18 20:57:06
20阅读
好久没写了,最近在做一个教授给的任务,任务要求就是使用华硕的Xtion pro 这个设备(和微软的Kinect差不多)来识别一个一个的小机器人的位置和角度。做之前什么都不知道,上网查了好多资料,但是中文的资料较少,所以写点东西出来一是给自己记录,而是方便以后研究这个东西的童鞋。首先介绍一下思路:Aruco是一个做显示增强技术的库,但是我只要它的识别坐标和角度的功能OPENNI2 相当于是个驱动
参考:Contour Detection using OpenCV (Python/C++)边缘检测应用:运动检测和分割轮廓:连接物体边界的所有点,通常,轮廓指的是有相同颜色和密度的边界像素寻找轮廓步骤: 1.读取图像转为灰度图2.二值转换,将图像转为黑白,高亮目标物体(canny边缘检测或者二值化阈值)。阈值化把图像中目标的边界转化为白色,所有边界像素有同样灰度值(“same intensity
OpenCV单目视觉定位(测量)系统The System of Vision Location with Signal CameraAbstract:This passage mainly describes how to locate with signalcamera,which bases on OpenCV library.Key words: OpenCV; Locate;Signalc
# Python OpenCV 物体定位的基础介绍 随着计算机视觉技术的快速发展,物体定位(Object Detection)已成为一个重要的研究领域。在很多应用中,例如自动驾驶、安防监控和人机交互,物体定位都是至关重要的技术。本文将深入探讨如何使用 Python 的 OpenCV 库来实现物体定位,并提供一些代码示例,以帮助读者掌握基本的方法和技巧。 ## 1. OpenCV 概述 Ope
原创 2024-08-04 05:30:50
391阅读
  • 1
  • 2
  • 3
  • 4
  • 5