############################################################### 【纸上得来终觉浅,绝知此事要躬行】B站视频 新课件:https://pan.baidu.com/s/1frWHqCVGR2VTn5QBtW4lPA 提取码:xh02 老课件:https://pan.baidu.com/s/1Wi31FxSPBqWiuJX9quX-jA 提
转载
2024-08-01 17:30:08
38阅读
实验十六 用高斯背景建模分离背景实验一、实验目的和要求二、实验内容三、实验仪器、设备四、实验原理五、实验步骤六、实验注意事项七、实验结果八、实验总结 一、实验目的和要求 理解背景建模的基本原理;掌握实现背景建模的代码编写方法。二、实验内容 (一)新建工程; (二)在Vs2015中配置OpenCV; (三)使用VideoCapture类打开视频; (四)创建高斯混合模型; (五
转载
2024-04-03 12:38:21
105阅读
文章目录前言opencv中的一个方法泊松融合图像梯度图像散度融合图像散度通过散度场进行图像重建泊松融合的一般逻辑 前言最近碰到一个项目上的难题,是要从电动显微镜对焦的多张图像进行融合。因为,显微镜物镜的景深范围较小,可能在同一视野中有多个需要拍摄的物体位于不同的景深范围内,所以想通过图像的融合,将不同景深上的多张图像进行融合,从而把这些物体都在同一张图像中对用户进行展示。opencv中的一个方法
转载
2024-01-03 22:56:41
150阅读
一、背景有关高斯金字塔、拉普拉斯金字塔的相关背景知识可以参考OpenCV之图像金字塔与图像融合二、图像融合图像金字塔一个典型的应用就是图像融合。图像融合的实现步骤为:读入两幅大小相同的图像 img1 img2;构建 img1 img2的 高斯金字塔,层数根据需要设定(本实验为7层);根据高斯金字塔和拉普拉斯金字塔的关系,推出拉普拉斯金字塔的Li(也为7层,第一层大小和原图相同);在拉普拉斯图层的每
转载
2024-04-25 21:01:12
230阅读
由于之前老师一直让我用我们的到的图像深度信息进行虚化,如果深度信息得到的很准确,这的确不是一件难事,只是目前我对那一套计算体系掌握的不够。假设我们手上有一副已经获取的深度图像,现在我的手上有两份,DFD以及双目(双目的后面我会放上)DfD的那个项目不便于公开,抱歉。 我们得到的原图如下: 这次换了以下场景拍的,依然是液晶透镜拍摄得到的像 然后还有一幅深度图。第一步:我们利用深度图进行一个图像分
转载
2024-01-09 19:47:07
119阅读
图片1、读入图像使用函数 cv2.imread() 读入图像。这幅图像应该在此程序的工作路径,或者给函数提供完整路径, 第二个参数是要告诉函数应该如何读取这幅图片。(不写默认彩色) cv2.IMREAD_COLOR:读入一副彩色图像。图像的透明度会被忽略,这是默认参数。 &nbs
转载
2024-03-16 11:05:46
95阅读
# Python 人像背景融合入门教程
在人像处理领域,背景融合是一项备受欢迎的技术,能够将人物与其他背景元素自然融合在一起。对于刚入行的新手来说,实现这一特性需要掌握几个核心步骤。本文将指导你完成这一过程,并提供必要的代码示例和解释。
## 整体流程
下面的表格展示了实现人像背景融合的主要流程:
| 步骤 | 描述 |
|-------|--
当人脸识别赋能各种场景,我们能够用它做哪些好玩的事情呢?一起来看~《穿越和TA去结婚》单方面宣布,我和彭于晏在一起了还可以有宝宝通过小程序穿越时空和TA去拍结婚照。分别上传男生和女生的图片,能够与我们提供的底图与背景相融,生成事先设定的不同时期的结婚照,比如你可以试试和男神女神一起去穿越,还可以有“宝宝惊喜”。以下为小程序的制作教程,教大家如何接入人脸融合API。1、什么是人脸融合人脸融合一般指利
目录前言1 Temporal Median Filtering2 使用中值进行背景估计3 背景估计代码(C ++ / Python)3.1 Python代码3.2 C++代码4 帧差分(C++/Python)4.1 Python代码4.2 C++代码4.3 结果 前言首先,奉上原文链接:https://www.learnopencv.com/simple-background-estimatio
转载
2024-07-26 10:46:15
31阅读
openCV中实现了背景分割算法——grabCut()和漫水填充算法——floodFill();其中GrabCut算法是调用仅需要确认前景和背景输入,该算法就可以完成前景和背景的相对最优的分割;该算法利用了图像中的纹理信息和边界反差信息,来进行分割,和分水岭算法比较类似,但是速度挺慢的,结果好于分水岭;floodFill漫水填充算法比较常见,图画中的填充色用的就是这个算法;原理也比较简单就是遍历封
转载
2024-03-19 08:32:22
48阅读
由于中篇最后得到的图像还是需要手动去磨皮,边缘突出的部分还是没找好。 这里我再想办法处理一下: 现在我们已经得到了这样的一张掩模: 边缘找的不是很好 那么我们可以结合找边缘的方法对它进行处理。第一步: 找边缘的方法常见的主要有三种: 1.1 Sobel代码如下:#include <opencv2/core/core.hpp>
#include <opencv2/highg
转载
2024-03-07 19:02:36
181阅读
// 该文件是 OpenCV 项目的一部分。 它受此发行版顶层目录和 http://opencv.org/license.html 中的 LICENSE 文件中的许可条款的约束
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/video.hpp"
#include "opencv2/vide
转载
2024-05-23 17:15:59
104阅读
文章目录一、项目思路二、环境布置2.1、cvzone安装2.2、MediaPipe安装2.3、常见问题2.4、注意事项三、算法详解3.1、segmentor.removeBG():去除背景(抠图)3.2、cvzone.stackImages():堆叠图像3.3、fpsReader.update():更新帧图像3.4、os.listdir():返回指定的文件夹包含的文件或文件夹的名字的列表。四、实
Learning Opencv 3 —— 十五章 背景去除 Background Subtraction背景去除概述background subtraction 也被称为 background differencing。这里将首先介绍经典背景模型的缺点,之后将介绍一些更高阶的方法。其中将介绍一种处理室内光线相对稳定的快速方法和一种能够兼容室外场景的一种称为 codebook 速度较慢的方法。背景去
转载
2023-11-08 15:46:58
282阅读
从本次教程开始,我们进入新的篇章,之前一直在讨论OpenCV的特征部分,这次我们来讨论OpenCV中的背景分离,又称背景减法模型。背景分离(BS)是一种通过使用静态相机来生成前景掩码(即包含属于场景中的移动对象像素的二进制图像)的常用技术。顾名思义,BS计算前景掩码,在当前帧与背景模型之间执行减法运算,其中包含场景的静态部分,或者更一般而言,考虑到所观察场景的特征,可以将其视为背景的所有内容。背景
转载
2023-09-16 22:39:20
230阅读
背景提取是在视频图像序列中提取出背景,背景就是场景中静止不动的景物。因为摄像机不动,因此图像中的每个像素点都有一个对应的背景值,在一段时间内,这个背景值是比较固定的。背景提取的目标就是根据视频图像序列,找出图像中每一点的背景值。 背景提取有很多算法。针对静止摄像机的帧间差分法、高斯背景差分法,还有针对运动摄像机的光流法等。 一. 帧间差
转载
2023-09-27 13:27:58
267阅读
一、理论资料 codebook背景建模方法,opencv库中还没有对应的函数。在《learning opencv》中相应的代码,但是不完善甚至,有错误。 有对codebook理论作简要的介绍,部分引用如下: CodeBook算法的基本思想是得到每个像素的时间序列模型。这种模型能很好地处理时间起伏,缺点是需要消耗大量的内存。CodeBook算法为当前图像的每一个像素建立一个CodeBook(CB)
转载
2024-05-03 19:20:07
52阅读
图像融合简介图像融合(Image Fusion)是指将多源信道所采集到的关于同一目标的图像数据经过图像处理和计算机技术等,最大限度的提取各自信道中的有利信息,最后综合成高质量的图像,以提高图像信息的利用率、改善计算机解译精度和可靠性、提升原始图像的空间分辨率和光谱分辨率,利于监测。在图像处理中,图像融合是一个基本的处理操作,目的是将源图像中一个物体或者一个区域嵌入到目标图像而生成一个新的图像。在对
转载
2024-10-22 18:08:42
46阅读
opencv图像融合
原创
2024-06-12 12:12:08
23阅读
1.opencv 图像拼接和图像融合技术 2.特征检测和特征匹配方法汇总(基于Opencv) 这两篇博文是我认为含金量非常高的博文,尤其是第一篇。接下来我说我的理解。 刚开始接触的话是很模糊的其实无外乎几点1.特征值匹配 每一张图片都有对应的特征因子,如果想对有重复部分照片进行拼接,(如图1-1),(图1-1)就要提取两张图片相同的特征,值提取之后要将相同的特征点进行匹配(因为之后要将有相同特征点
转载
2024-02-19 15:20:50
56阅读