HE: histogram equalization 直方图均衡化AHE: adapative histogram equalization 自适应直方图均衡化, 加了分块而已。CLAHE: contrast-limited adapative histogram equalization 对比度受限的自适应直方图均衡化, 可用性最好。 直方图均衡化的作用是
opencv4.5.4在objdetect模块中添加了基于深度学习的人脸检测与识别功能,该项目由OpenCv China于仕琪团队、邓伟洪团队贡献。 文章目录1、介绍1.1、检测1.2、识别2、人脸识别(1:N)解决方案2.1、FaceSolution.hpp2.3、FaceSolution.cpp3、人脸识别测试 FaceDetector人脸检测、识别 DNN模型 demo。 1、介绍基于深度
今天写直方图,学了几个相关函数 1. mixChannels  void mixChannels(const Mat* src, int nsrc, Mat* dst, int ndst, const int* fromTo, size_t npairs)功能: 把 src 中指定的若干通道 复制到 dst中src: 输入图像, 可以多张nsrc: 有多少张输入图像dst: 输出图像,可以多张nd
转载 2014-07-15 16:55:00
124阅读
2评论
OpenCV直方图
原创 5月前
21阅读
文章目录直方图(histogram)numpy.ravelenumerate绘制直方图matplotlib.pyplot.hist示例计算图像直方图cv2.calcHist示例==错误记录==直方图应用直方图均衡化cv2.equalizeHist示例局部直方图均衡化cv2.createCLAHE示例直方图比较cv2.compareHist示例直方图比较中的bins如何理解==错误记录==二维直方
目录1 灰度直方图简介1.1 灰度直方图概念1.2 灰度直方图作用1.3 绘制的直方图1.4 归一化直方图2 matplotlib库 绘制直方图-hist()3 OpenCV库 绘制直方图-calcHist()参考资料 1 灰度直方图简介1.1 灰度直方图概念灰度直方图(histogram)是灰度级的函数,描述的是图像中每种灰度级像素的个数,反映图像中每种灰度出现的频率。其中,横坐标是灰
简介在上一篇文章中,我们知道了如何去进行直方图均衡化来增强图像。但是,相信大家会有一个疑惑,那就是如何获取一幅图像的直方图,今天,我们就简单的讲一下如何获取一幅图像的直方图。想得到一幅图像的直方图很容易,简单的讲:我们可以通过下面几步来得到想要的结果。1、加载一幅图像2、设置一些参数3、计算直方图4、归一化(可选)5、定义画布6、绘制直方图加载一幅图像很简单,我们已经知道,使用imread()函数
OpenCV与图像处理学习十七——OpenCV人脸检测(含代码)一、人脸识别概要1.1 人脸检测1.2 人脸对齐(Face Alignment)1.3 人脸特征提取(Face Feature Extraction)1.4 人脸识别(Face Recognition)二、人脸检测(不是识别)的代码2.1 cv2.CascadeClassifier2.2 dlib库 一、人脸识别概要一般而言,一个完
直方图的计算,绘制与分析目标• 使用 OpenCV 或 Numpy 函数计算直方图• 使用 Opencv 或者 Matplotlib 函数绘制直方图• 将要学习的函数有:cv2.calcHist(),np.histogram()原理通过直方图你可以对整幅图像的灰度分布有一个整体的了解。直方图的 x 轴是灰度值(0 到 255),y 轴是图片中具有同一个灰度值的点的数目。直方图其实就是对图像的另一种
OpenCV Python 直方图直方图什么是直方图直方图的作用敲程序下面为使用Python的OpenCV和matplotlib来编写几个samples程序来实际感受一下图像的直方图:使用matplotlib计算直方图代码import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('~/P
目标学会使用OpenCV和Numpy函数查找直方图使用OpenCV和Matplotlib函数绘制直方图你将看到以下函数:cv.calcHist(),np.histogram()等。理论那么直方图是什么?您可以将直方图视为图形或绘图,从而可以总体了解图像的强度分布。它是在X轴上具有像素值(不总是从0到255的范围),在Y轴上具有图像中相应像素数的图。这只是理解图像的另一种方式。通过查看图像的直方图
一、根据网上资料整理了opencv直方图和特征提取的相似度比较 算法总结语言采用的c++ qml 借助opencv 库来完成。。。1 直方图比较算法(个人认为误差很大,几乎不能用来作为相似度比较)对输入的两张图像进行直方图均衡化及直方图计算步骤后,可以对两个图像的直方图进行对比,两张图像的直方图反映了该图像像素的分布情况,可以利用图像的直方图,来分析两张图像的关系。 &nbsp
目录1 直方图的计算2 直方图的绘制2.1 cv.line()和cv.polylines()2.2 plt.hist()3 2D 直方图3.1 cv.calcHist()3.2 plt.imshow() 直方图是是图像处理中非常重要的像素统计工具,不再表征任何的图像纹理信息,而是表示像素的统计特性。由于同一物体无论是旋转还是平移,在图像中都应具有相同的灰度值,因此直方图具有 平移不变性、缩放不
直方图均衡化函数可以自动的改变图像直方图的分布形式,这种方式极大的简化了直方图均衡化过程中需要的操作步骤,但是该函数不能指定均衡化后的直方图分布形式。在某些特定的条件下需要将直方图映射成指定的分布形式,这种将直方图映射成指定分布形式的算法称为直方图匹配或者直方图规定化。直方图匹配与直方图均衡化相似,都是对图像的直方图分布形式进行改变,只是直方图均衡化后的图像直方图是均匀分布的,而直方图匹配后的直方
近期要开展一个新项目,关于场景图像信息获取的,具体涉及到场景中人脸检测、运动目标检测以及场景中给定目标的追踪问题,后面还会涉及到信息交互的界面开发。接下来将通过写博客的方式记录项目进展(问题及解决方案)和心得。人脸检测人脸检测不同于人脸识别,人脸检测通俗的意思就是在获取是场景数据(图像、视频)中,将具有人脸特征的目标检测出来,但不清楚检测到的人脸是谁,只知道这可能是一张脸;人脸识别就是在检测的基础
参考http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/histograms/histogram_comparison/histogram_comparison.html《OpenCV3编程入门》 原理要比较两个直方图H1和H2, 首先必须要选择一个衡量直方图相似度的 对比标准 d(H1, H2) 。Ope
图像直方图的两个基本属性:range[0, 256]和bins(组块)直方图无空间信息中间灰度级像素多,动态范围小,图像对比度低直方图均匀分布时图像最清晰图像的直方图是用来表现图像中亮度分布的直方图,给出的是图像中某个亮度或者某个范围亮度下共有几个像素,即统计一幅图某个亮度像素数量方法一:利用matplotlibimport cv2 as cv import numpy as np from ma
目标学习直方图均衡化的概念,并利用它来提高图像的对比度。理论考虑这样一个图像,它的像素值仅局限于某个特定的值范围。例如,较亮的图像将把所有像素限制在高值上。但是一幅好的图像会有来自图像所有区域的像素。因此,您需要将这个直方图拉伸到两端(如下图所示,来自wikipedia),这就是直方图均衡化的作用(简单来说)。这通常会提高图像的对比度。OpenCV中的直方图均衡OpenCV具有执行此操作的功能cv
注释:本文翻译自OpenCV3.0.0 document->OpenCV-Python Tutorials,包括对原文档种错误代码的纠正一.直方图-1:查找、绘制、分析1.目标使用OpenCV和Numpy函数查找直方图使用OpenCV和matplotlib函数绘制直方图会学会这些函数cv2.calcHist()、np.histogram()等2.原理那么什么是直方图呢?你可以将直方图视为图形
热力学温标是由威廉·汤姆森,第一代开尔文男爵于1848年利用热力学第二定律的推论卡诺定理引入的。它是一个纯理论上的温标,因为它与测温物质的属性无关。符号T,单位K(开尔文,简称开)。国际单位制(SI)的7个基本量之一,热力学温标的标度,符号为T。根据热力学原理得出,测量热力学温度,采用国际实用温标。热力学温度旧称绝对温度(absolute temperature)。单位是“开尔文”,英文是“Kel
  • 1
  • 2
  • 3
  • 4
  • 5