本文介绍 OpenCV 的基本数据结构,做到心中有数就不会在阅读示例代码的时候发憷。
Mat 类Mat 是 OpenCV 中最重要的一种数据结构,OpenCV 将其定义为一个类,用于存储图像矩阵。属性释义dims矩阵的维度,如 3x4x5 的矩阵为 3 维datauchar 类型指针, 指向矩阵数据内存rows, cols矩阵的行数、列数type矩阵元素类型 + 通道数depth像素位数(
转载
2024-03-18 20:22:52
314阅读
什么是对象跟踪?简而言之,在视频的连续帧中定位对象称为跟踪。该定义听起来很直接,但在计算机视觉和机器学习中,跟踪是一个非常广泛的术语,涵盖概念上相似但技术上不同的想法。例如,通常在对象跟踪下研究以下所有不同但相关的想法密集光流:这些算法有助于估计视频帧中每个像素的运动矢量。稀疏光流:这些算法,如Kanade-Lucas-Tomashi(KLT)特征跟踪器,跟踪图像中几个特征点的位置。卡尔曼滤波:一
转载
2024-03-20 11:25:38
30阅读
卷积什么是二维卷积呢?看下面一张图就一目了然: 卷积就是循环对图像跟一个核逐个元素相乘再求和得到另外一副图像的操作,比如结果图中第一个元素5是怎么算的呢?原图中3×3的区域与3×3的核逐个元素相乘再相加:5=1×1+2×0+1×0+0×0+1×0+1×0+3×0+0×0+2×2 算完之后,整个框再往右移一步继续计算,横向计算完后,再往下移一步继续计算。简而言之,卷积是一个对应位置像素值相乘后再相加
转载
2024-06-29 08:04:28
65阅读
现实中图像经常出现划伤或者被噪声腐蚀或者有污渍点,对于这类图像可以通过修复(inpainting)相关的算法来说恢复损害的图像。一般情况下这些算法都是基于污染区域的周围已知的颜色和结构,通过繁殖和混合重新生成填充污染区域。OpenCV中实现的图像修复算法有两种。基于Navier-Stokes的修复方法基于图像梯度的快速匹配方法又称(Telea法)对应的两个枚举类型分别如下:CV_INPAINT_N
转载
2024-05-08 14:10:16
49阅读
关于源代码源代码和用到的支持超过1G像素大小的opencv库(vc17+vs2022)已经上传到csdn,可以通过博文的标题下方提供连接进行下载。创作背景最近在做一个电路底板的缺陷检测项目,线扫相机保存下来的bmp图像大概为1.5G,像素大小为30000+ x 80000+,在进行缺陷分析之前,需要把bmp大图先切成1280x1280或者640x640的小图,然后在小图上使用yolov8进行缺陷分
转载
2024-06-06 10:24:19
126阅读
以HMMDemo为例1、将OpenCv安装目录下的cv、cvaux、otherlibs/highgui三个目录复制到你的工程目录下,再在工程目录下新建一个camera目录,将安装目录下的apps/Common目录中的两个文件复制至camera目录中。2、在集成开发环境的项目管理窗口中(FileView)新建六个文件夹,分别为highgui_src,highgui_include,cvaux_inc
转载
2024-05-07 21:41:02
45阅读
图像编码(一)图像编码与压缩的本质就是对将要处理的图像源数据按照一定的规则进行变换和组合,从而使得可以用尽可能少的符号来表示尽可能多的信息。源图像中常常存在各种各样的冗余:空间冗余、时间冗余、信息熵冗余、结构冗余、知识冗余等,这就使得通过编码来进行压缩称为了可能。分类
1、根据压缩效果可以分为有损编码和无损编码。有损编码在编码的过程中把不相干的信息都删除了,只能对原图像进行近似的重建;而无损
转载
2023-12-03 13:47:44
50阅读
一、什么是resize 函数: resize函数opencv中专门用来调整图像大小的函数; opencv 提供五种方法供选择分别是: a.最近邻插值——INTER_NEAREST; b.线性插值 ——INTER_LINEAR;(默认值) c.区域插值 ——I
转载
2024-02-27 19:58:28
178阅读
如何通过图像处理从低分辨率/模糊/低对比度的图像中提取有用信息。下面让我们一起来探究这个过程:首先我们获取了一个LPG气瓶图像,该图像取自在传送带上运行的仓库。我们的目标是找出LPG气瓶的批号,以便更新已检测的LPG气瓶数量。步骤1:导入必要的库import cv2import numpy as npimport matplotlib.pyplot as plt步骤2:加载图像并显示示例图像。im
转载
2024-03-01 19:13:58
75阅读
图像处理库综述1. OpenCV简介:OpenCV全称是:Open Source Computer Vision Library。是Intel®开源计算机视觉库。它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV是一个基于(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由一系列
转载
2024-02-29 14:42:34
103阅读
图像轮廓是具有相同颜色或者强度的连续点的曲线。固定阈值、自适应阈值、大津阈值。
原创
2023-07-09 09:15:33
190阅读
简 介: 本文中我们讨论了利用 C++, Python对图像进行剪切的基本方法, 这些方法都是应用了对于矩阵的切片操作完成的。指定剪切图片在图像数据矩阵中对应的高、宽的范围,对应范围的数据代表了切割出来的图像。通过 imwirte, imshow 可以将切割下的图片进行存储和显示。 后面也进一步讨论了如何对大的图片进行分割,形成许多小的图片的方法。关键词: 图片剪切,crop
转载
2023-11-15 16:04:54
330阅读
平滑滤波平滑滤波是低频增强的空间域滤波技术。空间域滤波技术即不经由傅立叶转换,直接处理影像中的像素,它的目的有两类:一类是模糊;另一类是消除噪音。空间域的平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑的效果越好,但邻域过大,平滑会使边缘信息损失的越大,从而使输出的图像变得模糊,因此需合理选择邻域的大小。-- 整理自《维基百科》与《百度百科
转载
2024-08-08 11:26:38
114阅读
图像修补目标在本章中, 将学习通过 inpainting的方法清除旧照片中的小噪音等学习OpenCV中的修复函数基础大多数人的家里都会有一些旧化的照片,上面可能有黑点、折痕、笔画等。大多数人都想将其还原成原先的样子。但不能简单地在绘画工具中擦除它们,因为擦除操作只是简单地用白色结构代替黑色结构,这是没有用的。在这些情况下,将使用一种称为图像修复的技术。基本思想很简单:用附近的像素替换那些不良区域,
转载
2024-04-24 09:50:39
100阅读
前面一篇教程中,我们实现了Zhang的快速并行细化算法,从算法原理上,我们可以知道,算法是基于像素8邻域的形状来决定是否删除当前像素。还有很多与此算法相似的细化算法,只是判断的条件不一样。在综述文章, Thinning Methodologies-A Comprehensive Survey中描述了各种细化算法的实现原理,有兴趣可以阅读
转载
2023-08-07 15:33:58
259阅读
数据的读取cv2.IMREAD_COLOR:彩色图像cv2.IMREAD_GRAYSCALE:灰度图像import cv2
img = cv2.imread('E:/opencv/open-cv/2-7/cat.jpg',1)
cv2.imshow("img", img)
cv2.waitKey(0)
cv2.destroyAllWindows()cv2.imread()读取图片,当括
转载
2024-02-27 17:52:02
49阅读
一、图像腐蚀 膨胀 细化的基本原理 1.图像细化的基本原理 ⑴ 图像形态学处理的概念 数字图像处理中的形态学处理是指将数字形态学作为工具从图像中提取对于表达和描绘区域形状有用处的图像分量,比如边界、骨架以及凸壳,还包括用于预处理或后处理的形态学过滤、细化和修剪等。图像形态学处理中我们感兴趣的主要是二值图像。 在二值图像中,所有黑色像素的集合是图像完整的形态学描述,二值图像的各个分量是Z2的元素。假
转载
2024-04-07 13:02:25
37阅读
这一节介绍的函数执行2D图像上的各种几何变换。它们并不改变图像本身的内容,而是对变形的像素栅格进行校正并映射变形栅格到目的图像。事实上,为了避免采样空点痕迹,映射是逆序进行的(避免小数坐标位置点的空白),即,对于每一个目的图像的像素点(x,y),函数计算对应源图象的坐标,并拷贝这一点的值: &
转载
2024-05-24 20:06:05
64阅读
学习目标:1、学习对图像应用不同的几何变换,如平移,旋转,仿射变换等;2、学习函数:cv2.getPerspectiveTransform。1、转换:OpenCV提供了两个转换函数,cv2.warpAffine和cv2.warpPerspective,可以进行各种转换。 cv2.warpAffine采用2x3变换矩阵,而cv2.warpPerspective采用3x3变换矩阵作为输入。2、缩放:缩
转载
2024-04-26 11:25:11
112阅读
图像的平滑与滤波 平滑滤波是低频增强的空间域滤波技术,是图像模糊、消除噪声。一、2D滤波器cv2.filter2D()对于2D图像可以进行低通或者高通滤波操作,低通滤波(LPF)有利于去噪声,模糊图像,高通(HPF)有利于找到图像边界。 import cv2
import numpy as np
img = cv2.imread('dog.jpg', 0)
kernel =
转载
2024-04-01 19:02:10
49阅读