OpenCV中的函数minMaxLoc()用于找出矩阵中的最大值和最小值,并且给出它们中的坐标。 函数原型如下:C++原型有两个,分别如下:C++原型一:void cv::minMaxLoc ( InputArray src, double * minVal, double * maxVal = 0, Point * minLoc = 0, Point * maxLoc = 0, Inp
线性混合操作 相关API (addWeighted): 参数1:输入图像Mat – src1 参数2:输入图像src1的alpha值 参数3:输入图像Mat – src2 参数4:输入图像src2的alpha值 参数5:gamma值 参数6:输出混合图像 注意点:两张图像的大小和类型必须一致才可以#include <opencv2/opencv.hpp> #include <io
转载 2024-09-25 15:52:26
85阅读
          阈值分割,顾名思义,就是对图像的像素点和选中的阈值进行比对的图像分割方法,在OpenCV 2.X中,Threshold()函数(基本阈值操作)和adaptiveThreshold()函数(自适应阈值操作)可以完成图像阈值分割的目的。基本思想是:给定一个数组和一个阈值,根据数组中的每个元素值是高于还是低于阈值而进行一些处理。1.固
问题描述这是一幅基因芯片的荧光图像,检测图像的ROI区域,对这个区域内的阴性点(弱)和阳性点(强)的数量进行统计,并标出点的位置。ROI区域检测:思路:(1)观察到图像对比度很低,首先对图像进行对比度增强(2)图像分割需要获得边缘信息,用canny算子检测边缘(3)对图像做闭运算,图像中很小的点江北腐蚀掉,从而显现出大的边缘(4)用findContours方法找出边缘(5) boundingRec
选取图像局部区域 Mat 类提供了多种方便的方法来选择图像的局部区域。 使用这些方法时需要注意,这些方法并不进行内存的复制操作。如果将局部区域赋值给新的 Mat 对象,新对象与原始对象共用相同的数据区域,不新申请内存,因此这些方法的执行速度都比较快。1 单行或单列选择 提取矩阵的一行或者一列可以使用函数 row()或 col()。函数的声明如下:Mat Mat::row(int i) const
原创 2021-07-29 11:31:10
2139阅读
opencv自带的非局部降噪算法:CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, float h = 3, int templateWindowSize = 7, int searchWindowSize = 21);h是过滤强度,templateWindowSize是分块大小,searchWindowSize是搜索区域大小。应用实例int main(){ Mat I..
原创 2021-12-25 18:22:51
706阅读
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、访问图像中的像素1.图像矩阵是如何存储在内存中的?2.颜色空间的缩减3.访问图中像素的三种方法二、ROI区域图像叠加三、图像混合总结 前言笔者本科时候有幸接触了OpenCV3.2.0版本的学习,后因考研压力不得不暂时停下学习的脚步,现在考研任务结束了,未来的导师也是从事的该方向,笔者又开始了新一轮的学习。回来发现Op
转载 2024-09-09 16:00:00
37阅读
文章目录四、边缘与轮廓4.1 图像梯度(见梯度算子)4.2 Canny边缘提取算法4.2.1 原理与流程4.2.2 非极大值抑制4.2.3 双阈值边缘连接处理4.2.4 代码4.3 轮廓4.3.0 轮廓与边缘区别4.3.1 轮廓查找与绘制4.3.2 面积、周长和重心4.3.3 轮廓近似4.3.4 凸包和凸性检测4.3.5 边界检测4.3.5.1 方向性判断4.3.6 轮廓性质4.3.6.1 边界
1、原理概述我们知道,图像的空间域和频域构成了描述图像的两种方式,前者对应图像中不同灰度的分布,后者则用于描述图像灰度变化的频率。那么从空间域来看,图像滤波就是去除图像中的噪声,提取感兴趣的部分;而在频域中,滤波的作用是增强部分频段,同时限制(或衰减)其他频段。按照频域滤波的特点,滤波器分为低通滤波器和高通滤波器,前者去除图像中的高频成分,后者去除低频成分。2、均值滤波器均值滤波的原理是将每个像素
OpenCV-选取图像局部区域1.imshow()1.单行或单列选择2.多行或多列选择2.submat()函数1.Rect2.Range3.submat()4.diag() Mat类提供了多种获取图像局部区域的方法1.imshow()1.单行或单列选择获取图像的某一行或某一列,可以使用row()函数或者col()函数方法说明row(int y)提取第y行图像col(int x)提取第x列数据示例
转载 2023-09-22 20:10:12
366阅读
目录一.汉字点阵字库原理 1.汉字编码1.1区位码1.2机内码 2.点阵字库结构 点阵字库存储 3 汉字点阵获取二、Ubuntu+Opencv+C++显示图片1.将图片、Asci0816.zf和HZKf2424.hz放到文件夹中2.创建test3.cpp文件,并将实现代码写入3.创建logo.txt文件,并写入图片上显示的文字内容4.编译5.运行6.结果一.
转载 2024-03-23 10:51:08
175阅读
小编有个群193369905,里面分享的均是机器视觉的资料, 最近很多朋友问我如何去追踪一个乒乓球,然后利用PID算法来保证活动板的平衡,于是我利用树莓派和arduino实现了这个小实验,本文提出一种基于图像的圆形目标实时跟踪方法,用以解决圆形目标由远及近运动时跟踪稳定性不高的问题。然后将球体的中心坐标通过串口送给电机,利用电机来控制活动板的平衡。前篇博客我已经很好的讲解过了camshif原理和代
转载 2024-05-29 06:35:40
298阅读
需配置好OpenCV和OCR环境下运行1、OpenCV简介OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库。OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留了大量的C语言接口。该库也有大量的Python, Java and MATLAB/OCTAVE (版本2.5)的接口。这些语言的API接口函数可以通过在
转载 2023-11-26 16:43:14
111阅读
图像处理:数黑色格子-基于Java语言的open cv应用1.实验要求2.实验步骤3.有参考意义的书籍4.实验心得 这是本学期我们开设的专业实训课程的作业,任务要求主要是实现:完成一幅方块图像的打开和显示,并统计其中的黑色方块数量,现在特把其完成过程中的心得进行整理。1.实验要求能够读取任何格式的图片文件能读取出来该图片文件的像素点能对图片进行二值化和灰度化的预处理,进而提高角点检测的精确度将图
转载 2024-05-03 17:07:55
39阅读
前言: 今年有一个高等教育部主办,举办地在余姚的比赛,我们报了机械手解魔方的项目!其中的方案之一是用摄像头采集魔方的六面信息!为了最快的采集信息,决定使用两个摄像头顶角照射,一个摄像头读取三面信息,这样两个摄像头一次直接读取完! 其中最快的方法就是两个摄像头,顶角摆放,采集六面信息! 这其中,我有两种方案!1- 直接在倾斜面上颜色识别采集信息,在进行面矩阵转换;2-将倾斜面矫正回来,
转载 2024-04-23 14:30:48
134阅读
转载 2024-03-01 14:49:16
122阅读
一、前言   最初想写这篇文章就是想帮助和我一样的热心于图像处理的初学者尽快掌握SVM。通过自学毛星云编著的《Opencv3编程入门》一书,并亲自一个一个地码上所有的示例代码,做了一个项目后,算是真正地入门图像处理领域了吧,但也仅仅是入门。      学海无涯,愿每个对图像处理,甚至机器人学感兴趣的人都能保持初心,勇往直前。      本文工程基于Opencv2.4.9和vs2010搭建。而本文也
转载 2024-03-18 20:57:06
20阅读
              此文章主要是学习的记录。使用opencv的版本是 3.4.6。实现了图片的人脸检测及人的眼睛、鼻子和嘴巴的检测。里面使用的窗口显示相关的代码都是opencv的函数。 人脸检测        openCV的人脸识别主要通过Haar特征分类器实现
转载 2024-08-27 14:46:30
68阅读
1、实验内容:自动是被下列九宫格图像中小人的位置,并将小人分割出来2、思路分析:本实验的难点首先在于如何在一幅图像中把九幅图片分离出来,其次如何能够从分离出来的九幅图片中识别出小人图像。本人的具体思路是这样的:分离九幅图片:通过findContours()函数寻找到图像中所有物体的轮廓,并用boundingRect()获得所有轮廓的包围矩形,但是我们需要的只是九宫格中的九个矩形区域,因此可以通过比
目录前言 一、图像处理?二值化处理?膨胀、腐蚀?开运算、闭运算二、案例实现Step1:灰度处理Step2:对视频进行帧差处理Step3:二值化处理Step4:腐蚀处理Step5:膨胀处理 Step6:标记、框选目标?完整代码三、总结 前言 本文主要以车辆识别为目标,利用 C++语言 结合 Qt + OpenCV 进行图像处理相关步骤的讲解一、图像处理?二值化
  • 1
  • 2
  • 3
  • 4
  • 5