文章目录一、ORB算法原理1.特征点提取2.特征点编码3.opencv实现4.算法优缺点二、SIFT算法原理1.特征点提取2.特征点描述3.算法优缺点三、SURF算法原理1.特征点提取2.特征点描述3.算法优缺点 一、ORB算法原理全名Oriented FAST and Rotated BRIEF算法,是指它基于FAST算法提取特征点,并基于BRIEF算法构建特征点的描述子,在他们原有的基础上进
总结一下实现多角度模板匹配踩的坑 一 、多角度匹配涉及到要使用mask,首先opencv matchTemplateMask自带的源码如下:static void matchTemplateMask( InputArray _img, InputArray _templ, OutputArray _result, int method, InputArray _mask ) { CV_As
模板匹配是通过模板在采集到的原图像进行滑动寻找与模板图像相似的目标。模板匹配不是基于直方图的方式,而是基于图像的灰度匹配。其基本原理是逐像素的把一个以一定大小的实时图像窗口的灰度矩阵与参考图像的所有可能的串口灰度阵列,按照某种相似度量方法进行搜索比较的匹配方法,从理论上说就是采用图像相关技术。为了利用模板匹配从源图像中得到匹配区域,从源图像选取该区域作为进行匹配的模板。模板从源图像左上角开始每次以
在OCR实际开发中,证件照采集角度有很大的偏差,需要将图片进行旋转校正,效果图:在应用中发现应该加入高斯模糊,可以极大减少误差线条. 知道线条后 通过求斜率 得旋转角度 .(x1-x2)/(y1-y2) 结果 结果还行吧 ! 当然还有直方图也可以判断,有待研究!霍夫变换Hough变换是经典的检测直线的算法。其最初用来检测图像中的直线,同时也可以将其扩展,以用来检测图像
项目Introduce:项目名称:Angle circulator(角度计算器) 通过鼠标点击确定顶点和两个边位置坐标,再运用角度公式,计算出角度,在原图显示结果。项目流程预览:        通过鼠标定点击确定顶点和两边的坐标位置,确定角度,然后通过计算公式,自定义函数完成操作。项目与知识衔接:  鼠标点击事件(setMouseCallback)
完整源码:1.背景随着汽车电子和人工智能的快速发展,智能连接汽车也迎来了全面发展的黄金时代[1-5]。中央ADAS利用安装在车辆上的传感器、激光雷达和毫米波雷达实时检测车辆周围环境,补充障碍物检测和全景生成等功能,为驾驶员提供实时警报,提高行车安全性。在目前众多互联网公司参与的同时,传统汽车行业投入了相当大的资金用于辅助驾驶系统的研发[6]。 除了技术创新和业务投资外,日益增长的安全驾驶需求有助于
转载 2024-09-23 20:33:42
63阅读
1. 背景OpenCV提供了基于像素的模板匹配函数matchTemplte,但是该函数不支持带角度匹配,而且如果使用函数中的mask参数,结果可能偏离预期的结果。2. 模板训练通过对模板模板进行角度旋转,获取不同角度下的旋转图像与旋转掩膜图像。然后分别以此旋转图像作为模板进行匹配,获取最优结果作为匹配结果。// 定义轮廓的类型的别名 typedef std::vector<std::vec
转载 2024-01-17 09:04:01
1120阅读
特征点检测与图像匹配称兴趣点、关键点,它是在图像中突出且具有代表意义的一些点,通过这些点我们可以用来识别图像、进行图像配准、进行3D重建等。本文主要介绍OpenCV中几种定位与表示关键点的函数。一、Harris角点角点是图像中最基本的一种关键点,它是由图像中一些几何结构的关节点构成,很多都是线条之间产生的交点。Harris角点是一类比较经典的角点类型,它的基本原理是计算图像中每点与周围点变化率的平
转载 2024-04-02 05:27:49
295阅读
Ⅰ. 模版匹配和霍夫变换0x00 模板匹配原理 所谓的模板匹配,就是在给定的图片中查找和模板最相似的区域,该算法的输入包括模板和图片,整个任务的思路就是按照滑窗的思路不断的移动模板图片,计算其与图像中对应区域的匹配度,最终将匹配度最高的区域选择为最终的结果。 模板匹配和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有
特征检测是计算机对一张图像中最为明显的特征进行识别检测并将其勾画出来。大多数特征检测都会涉及图像的角点、边和斑点的识别、或者是物体的对称轴。角点检测 是由Opencv的cornerHarris函数实现,其他函数参数说明如下:cv2.cornerHarris(src=gray, blockSize=9, ksize=23, k=0.04) # cornerHarris参数: # src - 数据类型
1 cv2.pointPolygonTest() 查找图像中的点与轮廓线之间的最短距离此函数查找图像中点与轮廓线之间的最短距离。当点在轮廓线外时,返回的距离为负,点在轮廓线内时返回的距离为正,点在轮廓线上返回的距离为零。函数原型: retval = cv2.pointPolygonTest(contour,point,measureDist)参数:contoure1:图像中的轮廓point: 图像
了解如何在没有机器学习或任何框架的情况下在Python上进行对象检测 每当我们听说“ 对象检测 ”时,我们就会想到机器学习以及不同的框架。但是我们实际上可以在不使用机器学习或任何其他框架的情况下进行对象检测。在本文中,我将向您展示如何仅使用Python进行操作。将从定义模板图像(对象)开始,然后系统将在源图像中找到与我们选择的模板匹配的所有其他对象。因此,让我解释一下向您展示示例的含义
# 使用 OpenCV 获取匹配角度的完整流程 在图像处理和计算机视觉中,使用匹配算法识别和比较不同图像之间的相似性是非常常见的需求。这里,我将带你通过一个具体的示例,教你如何使用 Python 和 OpenCV 库来获取图像匹配角度。 ## 1. 流程概述 在实现“Python OpenCV 获取匹配角度”之前,我们首先需要了解整个流程。以下是具体步骤的表格: | 步骤 | 名称
原创 9月前
184阅读
# 如何实现opencv Python 模板匹配角度 ## 一、整体流程 ```mermaid journey title 实现opencv Python模板匹配角度 section 理解基本概念 section 下载安装opencv Python section 准备图像和模板 section 实现模板匹配 section 优化匹配结果 `
原创 2024-04-11 06:23:08
190阅读
0.前言      自己在写一个小程序时,遇到了一个类似于“完备匹配下的最大权匹配”的优化问题。在网上搜了下相关资料,了解到对应的匈牙利算法与KM算法,而且已经都有大神进行了详细讲解和代码的编写。唯一的不同之处是我参考的文章中KM算法目标是匹配结果最大为目标,而我的程序中是以匹配结果最小为目标。自己把代码改写了下,并封装为类。验证结果表明代码没有问题~1.KM算法&n
机器视觉实验合集:机器视觉-模板匹配实验(vc++6.0 + opencv1.0)机器视觉-数米粒实验(vc++6.0 + opencv1.0)机器视觉-手写数字识别(vc++6.0 + opencv1.0)本实验基于学校课程要求,实验环境采用vc++6.0 + opencv1.0模板匹配:在一幅图像中寻找和模板图像最相似的区域原理:遍历图像中每一个可能的位置,比较各处与模板是否相似,当相似度足够
什么是模板匹配模板就是一副已知的小图像,而模板匹配就是在一副大图像中搜寻目标,已知该图中有要找的目标,且该目标同模板有相同的尺寸、方向和图像元素,通过一定的算法可以在图中找到目标,确定其坐标位置。模板匹配是一种最原始、最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题。它是图像处理中最基本、最常用的匹配方法。模板匹配具有自身的局限性,主要表现在它只
模板匹配模板匹配顾名思义就是给定一幅影像(模板)然后在另一幅 图像中寻找这个模板的操作。它是一种用来在一幅大图中 寻找模板图像位置的方法。在OpenCV中有cv2.matchTemplate() 函数供我们方便调用。它的工作原理与2D卷积函数一样, 将模板图像在输入图像(大图)上滑动,并且在每一个位置对 模板图像和与其对应的输入图像的子区域进行比较。返回 的结果是一个灰度图像,每一个像素值表示了此
转载 2023-10-09 14:45:17
306阅读
导读本文将介绍使用OpenCV实现多角度模板匹配的详细步骤 + 代码。背景介绍    熟悉OpenCV的朋友肯定都知道OpenCV自带的模板匹配matchTemplate方法是不支持旋转的,也就是说当目标和模板有角度差异时匹配常常会失败,可能目标只是轻微的旋转,匹配分数就会下降很多,导致匹配精度下降甚至匹配出错。另一个方法是matchShape(形状匹配),匹配时需要轮廓
文章目录Demo1Demo2 Demo1program cv_MatchShapes; {$APPTYPE CONSOLE} {$R *.res} uses System.SysUtils, ocv.highgui_c, ocv.core_c, ocv.core.types_c, ocv.imgproc_c, ocv.imgproc.types_c, uResou
  • 1
  • 2
  • 3
  • 4
  • 5