# IPM逆透射变换的实现 ## 整体流程 实现IPM逆透射变换的过程主要分为以下几个步骤: 1. 读取输入图像 2. 标定摄像机参数 3. 计算逆透射变换矩阵 4. 应用逆透射变换 5. 显示输出图像 下面将详细介绍每个步骤需要做什么,以及对应的Python代码。 ## 1. 读取输入图像 首先,我们需要从文件中读取输入图像。可以使用OpenCV库中的`cv.imread()`函数来
原创 2023-10-12 10:22:28
741阅读
数据透视表将每一列数据作为输入,输出将数据不断细分成多个维度累计信息的二维数据表。在实际数据处理过程中,数据透视表使用频率相对较高,今天云朵君就和大家一起学习pandas数据透视表与逆透视的使用方法。本次使用的数据来源于Kaggle,车辆被警察拦下并进行搜查记录数据集,简称车辆数据。数据基本情况 groupby数据透视表使用 pandas.DataFrame.groupby 函数,其原理如下图所
根据透视原理,地面上的两条平行线会相较于一点,而逆透视变换就是去除透视效应,使得平行线仍然是平行线。
原创 2024-03-18 19:57:11
1154阅读
IPM逆透视变换是一种用于纠正透视畸变的技术,特别适用于从摄像机捕捉到的图像中恢复原始场景的几何形状和相对位置。在计算机视觉和图像处理领域,IPM逆透视变换常用于车辆导航、交通监控和虚拟现实等应用中。 在Python中,我们可以使用OpenCV库来实现IPM逆透视变换。下面是一个简单的示例代码,演示了如何在Python中使用OpenCV进行IPM逆透视变换: ```python import
原创 2024-05-26 05:44:59
332阅读
OpenCV与图像处理学习四——图像几何变换:平移、缩放、旋转、仿射变换与透视变换二、图像的几何变换2.1 图像平移2.2 图像缩放(上采样与下采样)2.3 图像旋转2.4 仿射变换2.5 透视变化2.6 几何变化小结 续上次的笔记:OpenCV与图像处理学习三——图像基本操作(1)这次笔记主要的内容是图像的几何变换:包括平移、缩放、旋转、仿射变换和透视变换。对应的OpenCV官方python文
作者丨lovely_yoshino1.背景在自动/辅助驾驶中,车道线的检测非常重要。在前视摄像头拍摄的图像中,由于透视效应的存在,本来平行的事物,在图像中确实相交的。而IPM变换就是消除这种透视效应,所以也叫逆透视。而我们需要认识的变换主要分为三类透视变换、仿射变换、单应性变换:1.透视变换:不能保证物体形状的“平行性”。仿射变换是透视变换的特殊形式。透视变换是将一个平面投影到另一个平面,简单理解
转载 2022-10-09 22:11:17
1875阅读
背景在自动/辅助驾驶中,车道线的检测非常重要。在前视摄像头拍摄的图像中,由于透视效应的存在稳定性。
原创 2023-02-05 09:57:24
2507阅读
图像的简单几何变换几何变换不改变图像的像素值,只是在图像平面上进行像素的重新安排适当的几何变换可以最大程度地消除由于成像角度、透视关系乃至镜头自身原因所造成的几何失真所产生的的负面影响。一、图像的平移在平移之前,需要构造一个平移矩阵,并将其传给仿射函数cv2.warpAffine() import cv2 import numpy as np img = cv2.imread('dog.jpg
转载 2024-03-19 13:04:57
129阅读
Hough(霍夫)变换是一种用于检测线、圆或者图像中其它简单形状的方法。最初Hough变换是一种线变换,这是一种相对较快的检测二值图像中直线的方法。 Hough线变换的基本理论是:二进制图像中的任何点都可能属于某些可能的线。如果我们将每一条线参数化,如斜率为a,截距为b,原始图像中的点就可以转换为对应于通过该点的所有线在该平面(a,b)中的点的轨迹。当然也可能是一部分轨迹。如果我们将原图中每个非0
转载 2024-05-08 22:25:20
56阅读
目标在本节中,将学习使用OpenCV查找图像的傅立叶变换利用Numpy中可用的FFT函数傅立叶变换的某些应用程序函数:cv2.dft(),cv2.idft()等理论傅立叶变换用于分析各种滤波器的频率特性。对于图像,使用2D离散傅里叶变换(DFT)查找频域。一种称为**快速傅立叶变换(FFT)**的快速算法用于DFT的计算。关于这些的详细信息可以在任何图像处理或信号处理教科书中找到。对于正弦信号,
图像的简单几何变换几何变换不改变图像的像素值,只是在图像平面上进行像素的重新安排适当的几何变换可以最大程度地消除由于成像角度、透视关系乃至镜头自身原因所造成的几何失真所产生的的负面影响。一、图像的平移在平移之前,需要构造一个平移矩阵,并将其传给仿射函数cv2.warpAffine()import cv2 import numpy as np img = cv2.imread('dog.jpg')
转载 2024-07-04 06:13:18
50阅读
几何变换几何变换可以看成图像中物体(或像素)空间位置改变,或者说是像素的移动。几何运算需要空间变换和灰度级差值两个步骤的算法,像素通过变换映射到新的坐标位置,新的位置可能是在几个像素之间,即不一定为整数坐标。这时就需要灰度级差值将映射的新坐标匹配到输出像素之间。最简单的插值方法是最近邻插值,就是令输出像素的灰度值等于映射最近的位置像素,该方法可能会产生锯齿。这种方法也叫零阶插值,相应比较复杂的还有
转载 2024-03-21 13:28:05
63阅读
学习opencv之图像傅里叶变换dft http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/core/discrete_fourier_transform/discrete_fourier_transform.html 在学习信号与系统或通信原理等课程里面可能对傅里叶变换有了一定的了解。我们知道傅里叶变换是把
      霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等)。最基本的霍夫变换是从黑白图像中检测直线(线段)。霍夫空间霍夫变换的关键是霍夫空间。                &nbsp
在Hough检测一章中出现了代码验证出错问题,由于进度原因在此只贴出另外一个相关的链接,后期修复好程序的Bug后再将具体内容贴上详情文章及代码请查阅轮廓,直线圆的拟合边缘检测Canny边缘检测查阅函数可得原型CV_EXPORTS_W void Canny( InputArray image, OutputArray edges, double th
转载 2024-02-19 10:27:33
55阅读
基于OpenCV 的图像极坐标变换目的Halcon算法实现OpenCV算法实现原理极坐标变换极坐标反变换原始图像->变换->反变换代码 目的极坐标变换的主要目的为将环形区域变换为矩形区域,从而便于字符识别等操作。最初接触极坐标变换为Halcon中的例程(检测啤酒瓶瓶口缺陷* inspect_bottle_mouth.hdev*)。 本项目就是基于OpenCV将图像用极坐标表示,实现圆
转载 2024-08-29 18:01:34
18阅读
opencv-图像基础知识-图像放射变换笔者工作环境: win10 vscode方法一:代码:import cv2 import numpy as np img = cv2.imread(r"C:\Users\lenovo\Desktop\python\python_vision\image.jpg",1) cv2.imshow("img",img) imginfo = img.shape
分水岭算法在opencv中算是比较重要的算法,主要是对图像的分割和提取,能够对认为是同一区域的部分分割出来,特别是针对一些图像中所要提取的特征相互接触,用普通的阈值分割很难划分出来。(代码学习:贾志刚老师)这次实验对象是堆积的管道,如图所示下图所示(从网上找的):本次主要针对这些圆管的横截面中每个圆孔的识别与定位,在此过程中也遇到了问题,也请各位同仁帮忙指正。import cv2 import n
图像变换傅里叶变换目标   本小节我们将要学习:   • 使用 OpenCV 对图像进行傅里叶变换   • 使用 Numpy 中 FFT(快速傅里叶变换)函数   • 傅里叶变换的一些用处   • 我们将要学习的函数有:cv2.dft(),cv2.idft() 等原理   傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性。实现 DFT
1.IPM包含3个函数。image2ground:将图像中的像素点(u, v)对应到地平面上(Z=1)IPM的像素点(x, y);ground2image:将IPM中的像素点(x, y)基于IPM的最大范围转换为xygrid,从而转化为uvgrid;src2ipm:基于uvgrid插值得到IPM中像素点(x, y)的的灰度值并显示,同时转换得到IPM中每个像素点的实际距离coord;2.如何求解原
原创 2022-07-12 09:56:15
255阅读
  • 1
  • 2
  • 3
  • 4
  • 5