?1 概述在这个研究中,我们将探索一个引入三阶失真的非线性放大器的模拟输出。非线性放大器是一种电路或设备,其输出信号的波形与输入信号的波形不成比例。在这种情况下,我们关注的是放大器引入的三阶失真,即输出信号中包含了三次谐波成分。为了研究这个问题,我们可以使用信号处理工具箱(TM)中的功能来模拟非线性放大器的输出。通过输入一个已知的信号波形,例如正弦波,我们可以观察到输出信号中的三次谐波成分。然而,
摘要:常用于消除噪声的图像平滑方法包括三种线性滤波(均值滤波、方框滤波、高斯滤波)和两种非线性滤波(中值滤波、双边滤波),本文将详细讲解两种非线性滤波方法。作者:eastmount。常用于消除噪声的图像平滑方法包括三种线性滤波(均值滤波、方框滤波、高斯滤波)和两种非线性滤波(中值滤波、双边滤波),本文将详细讲解两种非线性滤波方法。一.中值滤波前面讲述的都是线性平滑滤波,它们的中间像素值都是由邻域像
转载
2024-02-24 00:39:36
78阅读
本篇文章主要讲解Python调用OpenCV实现图像平滑,包括四个算法:均值滤波、方框滤波、高斯滤波和中值滤波。全文均是基础知识,希望对您有所帮助。知识点如下:1.图像平滑2.均值滤波3.方框滤波4.高斯滤波5.中值滤波PS:本文介绍图像平滑,想让大家先看看图像处理的效果,后面还会补充一些基础知识供大家学习。文章参考自己的博客及网易云课堂李大洋老师的讲解,强烈推荐大家学习。 图像平滑1.图像增强
转载
2024-02-27 10:02:09
81阅读
第一关: import numpy as np
def print_ndarray(input_data):
''' 实例化ndarray对象并打印
:param input_data: 测试用例,类型为list
:return: None
'''
#********* Begin *********#
text=input_data #拿到
转载
2023-06-16 23:24:00
89阅读
Numpy基础知识(一)数组属性NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度。在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量—
转载
2024-04-22 10:39:38
61阅读
文章目录系列文章目录前言1.滤波的概念2.线性滤波2.1 方框滤波[boxFilter]2.2 均值滤波[blur]2.3 高斯滤波[GaussianBlur]3. 非线性滤波3.1 中值滤波[medianBlur]3.2 双边滤波[bilateralFilter]总结附录 前言本系列文章仅是本人学习OpenCV过程中,针对常用的OpenCV函数的相关参数和简单用法进行记录,方便随时查询和使用。
基本数据类型标准数据类型Python3 中有六个标准的数据类型:Number(数字)String(字符串)List(列表)Tuple(元组)Set(集合)Dictionary(字典)Python3 的六个标准数据类型中:不可变数据(3 个):Number(数字)、String(字符串)、Tuple(元组);可变数据(3 个):List(列表)、Dictionary(字典)、Set(集合)。一: N
转载
2024-02-23 10:14:36
89阅读
(小声BB:这应该是关于numpy切片讲的最全的萌新式理解了>"<) 我也是一开始学然后经过很多次的尝试总结出来的一些东西,个人认为还是蛮全的numpy的分割分为一维二维,这两个东西一开始的时候总是傻傻分不清楚 这里我将根据一维二维的不同分割方法给出我的总结帮助兄弟萌理解,一维切片// 一维数组的切片操作
import numpy as np
a = np.array([[1, 2,
转载
2024-09-09 17:17:49
69阅读
7.3.3 自适应滤波器自适应中值滤波器对于7.3.2节所讨论的中值滤波器,只要脉冲噪声的空间密度不大,性能还是可以的(根据经验需Pa和Pb小于0.2)。本节将证明,自适应中值滤波器可以处理更大概率的脉冲噪声。自适应中值滤波器的另一个优点是平滑非脉冲噪声时,试图保留细节,这是传统中值滤波器所做不到的。正如前面几节中所讨论的所有滤波器一样,自适应中值滤波器也工作于矩形窗口区域Sxy内。然
转载
2024-07-02 07:09:08
61阅读
1. 平方损失函数:MSE- L2 Loss$$MSE = \sum_{i = 1}^n (y_i - \hat{y_i})^2 \tag1$$平方损失函数是光滑函数,能够用梯度下降法进行优化。然而,预测值距离真实值越远,平方损失的惩罚力度越大,因此,它对异常点比较敏感。为了解决该问题,可以采用绝对损失函数。2. 绝对值损失函数:MAE - L1 Loss$$MAE = \sum_{i = 1}^
转载
2024-03-29 22:39:40
266阅读
一、原理_中值滤波中值滤波的基本思想是将图像中每个像素的灰度值用其邻域内像素灰度的中值代替,它是一种非线性平滑滤波算法。 设加噪图像为 f(x,y) ,经中值滤波处理后的图像为g(x,y) ,则:式中,S是(x,y)像素点的邻域。本实验分别选用3×3、5×5、7×7的中值滤波窗口对图像进行处理。需要注意的是,当模板滑动到图像边缘时,模板的部分行或列就会处于图像之外,本实验可采用下面的任一种方法处理
转载
2024-03-21 16:05:37
242阅读
Python基础入门(四)一、基础数据类型之布尔值bool布尔值反应条件的正确与否,主要用于流程控制中。1、布尔值就两种:TRUE,FALSE。True 对的 真的 可行的
False 错的 假的 不可行的2、Python中所有数据都自带布尔值布尔值为False的数据有:0,None,'',[ ],{ }布尔值为True的数据有:除了上面代表FALSE的数据,其余都是。3、存储布尔值的变量名一般推
转载
2023-07-05 12:39:04
16阅读
对于数字图像的去噪,前边我们讲了均值滤波算法与高斯滤波算法,此外很常见的还有中值滤波算法,这些滤波算法都属于空间滤波,即对于每一个像素点,都选取其周围矩形区域中的像素点来计算滤波值。最近在项目中要使用到中值滤波,发现如果调用Opencv的medianBlur函数来实现中值滤波,窗口为3*3或者5*5时耗时为几毫秒,当窗口达到7*7或者9*9以上,耗时将增加至几十毫秒,这很影响实时性,所以自己基于C
转载
2024-07-17 15:49:52
0阅读
对于数字图像的去噪,前边我们讲了均值滤波算法与高斯滤波算法,此外很常见的还有中值滤波算法,这些滤波算法都属于空间滤波,即对于每一个像素点,都选取其周围矩形区域中的像素点来计算滤波值。最近在项目中要使用到中值滤波,发现如果调用Opencv的medianBlur函数来实现中值滤波,窗口为3*3或者5*5时耗时为几毫秒,当窗口达到7*7或者9*9以上,耗时将增加至几十毫秒,这很影响实时性,所以自己基于C
转载
2024-03-30 17:08:08
655阅读
中值定理,十大定理,达布中值定理
转载
2020-01-04 13:09:00
1886阅读
2评论
1、算法介绍 中位值滤波算法的实现方法是采集N个周期的数据,去掉N个周期数据中的最大值和最小值,取剩下的数据的平均值。中位值滤波算法特别适用于会偶然出现异常值的系统。中位值滤波算法应用比较广泛,比如用于一些比赛的评分,经常是去掉一个最高分去掉一个最低分,将其他评分取平均值作为选手的最终得分。优点:相比于平均值滤波算法,中位值滤波算法能够有效滤除
转载
2024-02-04 08:33:19
308阅读
快速中值滤波算法 中值滤波算法: 在图像处理中,在进行如边缘检测这样的进一步处理之前,通常需要首先进行一定程度的降噪。中值滤波是一种非线性数字滤波器技术,经常用于去除图像或者其它信号中的噪声。这个设计思想就是检查输入信号中的采样并判断它是否代表了信号,使用奇数个采样组成的观察窗实现这项功能。观察窗口中的数值进行排序,位于观察窗中间的中值作为输出。然后,丢弃最早的值,取得新的采样,重复上
转载
2024-03-26 16:28:51
119阅读
1、什么是中值滤波? 中值滤波是对一个滑动窗口内的诸像素灰度值排序,用其中值代替窗口中心象素的原来灰度值,它是一种非线性的图像平滑法,它对脉冲干扰级椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。中值滤波可以过滤尖峰脉冲。目的在于我们对于滤波后的数据更感兴趣。滤波后的数据保留的原图像的变化趋势,同时去除了尖峰脉冲对分析造成的影响。 以一维信号
转载
2024-03-08 18:06:50
72阅读
1.算法功能简介 中值滤波是一种最常用的非线性平滑滤波器,它将窗口内的所有像素值按高低排序后,取中间值作为中心像素的新值。 中值滤波对噪声有良好的滤除作用,特别是在滤除噪声的同时,能够保护信号的边缘,使之不被模糊。 中值滤波对于随机噪声的抑制比均值滤波差一些,但对于脉冲噪声干扰的椒盐噪声,中值滤波是非常有效的。  
转载
2024-03-07 12:27:55
27阅读
中值滤波能够有效去除图像中的异常点,具有去除图像噪声的作用。传统中值滤波的算法一般都是在图像中建立窗口,然后对窗口内的所有像素值进行排序,选择排序后的中间值作为窗口中心像素滤波后的值。由于这个做法在每个像素点处都要建立窗口并排序,非常耗时,尤其是有大量的冗余计算。如下图:黄色区域+中间粉色区域是第一个像素为中心建立的滤波窗口,粉色区域+右边蓝色区域为同一行第二个像素为中心建立的滤波窗口。传统做法对
转载
2024-05-09 11:28:56
208阅读