?1 概述在这个研究中,我们将探索一个引入三阶失真的非线性放大器的模拟输出。非线性放大器是一种电路或设备,其输出信号的波形与输入信号的波形不成比例。在这种情况下,我们关注的是放大器引入的三阶失真,即输出信号中包含了三次谐波成分。为了研究这个问题,我们可以使用信号处理工具箱(TM)中的功能来模拟非线性放大器的输出。通过输入一个已知的信号波形,例如正弦波,我们可以观察到输出信号中的三次谐波成分。然而,
摘要:常用于消除噪声的图像平滑方法包括三种线性滤波(均值滤波、方框滤波、高斯滤波)和两种非线性滤波中值滤波、双边滤波),本文将详细讲解两种非线性滤波方法。作者:eastmount。常用于消除噪声的图像平滑方法包括三种线性滤波(均值滤波、方框滤波、高斯滤波)和两种非线性滤波中值滤波、双边滤波),本文将详细讲解两种非线性滤波方法。一.中值滤波前面讲述的都是线性平滑滤波,它们的中间像素值都是由邻域像
本篇文章主要讲解Python调用OpenCV实现图像平滑,包括四个算法:均值滤波、方框滤波、高斯滤波中值滤波。全文均是基础知识,希望对您有所帮助。知识点如下:1.图像平滑2.均值滤波3.方框滤波4.高斯滤波5.中值滤波PS:本文介绍图像平滑,想让大家先看看图像处理的效果,后面还会补充一些基础知识供大家学习。文章参考自己的博客及网易云课堂李大洋老师的讲解,强烈推荐大家学习。 图像平滑1.图像增强
文章目录系列文章目录前言1.滤波的概念2.线性滤波2.1 方框滤波[boxFilter]2.2 均值滤波[blur]2.3 高斯滤波[GaussianBlur]3. 非线性滤波3.1 中值滤波[medianBlur]3.2 双边滤波[bilateralFilter]总结附录 前言本系列文章仅是本人学习OpenCV过程中,针对常用的OpenCV函数的相关参数和简单用法进行记录,方便随时查询和使用。
一、原理_中值滤波中值滤波的基本思想是将图像中每个像素的灰度值用其邻域内像素灰度的中值代替,它是一种非线性平滑滤波算法。 设加噪图像为 f(x,y) ,经中值滤波处理后的图像为g(x,y) ,则:式中,S是(x,y)像素点的邻域。本实验分别选用3×3、5×5、7×7的中值滤波窗口对图像进行处理。需要注意的是,当模板滑动到图像边缘时,模板的部分行或列就会处于图像之外,本实验可采用下面的任一种方法处理
对于数字图像的去噪,前边我们讲了均值滤波算法与高斯滤波算法,此外很常见的还有中值滤波算法,这些滤波算法都属于空间滤波,即对于每一个像素点,都选取其周围矩形区域中的像素点来计算滤波值。最近在项目中要使用到中值滤波,发现如果调用Opencv的medianBlur函数来实现中值滤波,窗口为3*3或者5*5时耗时为几毫秒,当窗口达到7*7或者9*9以上,耗时将增加至几十毫秒,这很影响实时性,所以自己基于C
转载 2024-07-17 15:49:52
0阅读
Numpy基础知识(一)数组属性NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度。在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量—
1、算法介绍        中位值滤波算法的实现方法是采集N个周期的数据,去掉N个周期数据中的最大值和最小值,取剩下的数据的平均值。中位值滤波算法特别适用于会偶然出现异常值的系统。中位值滤波算法应用比较广泛,比如用于一些比赛的评分,经常是去掉一个最高分去掉一个最低分,将其他评分取平均值作为选手的最终得分。优点:相比于平均值滤波算法,中位值滤波算法能够有效滤除
转载 2024-02-04 08:33:19
308阅读
快速中值滤波算法  中值滤波算法:      在图像处理中,在进行如边缘检测这样的进一步处理之前,通常需要首先进行一定程度的降噪。中值滤波是一种非线性数字滤波器技术,经常用于去除图像或者其它信号中的噪声。这个设计思想就是检查输入信号中的采样并判断它是否代表了信号,使用奇数个采样组成的观察窗实现这项功能。观察窗口中的数值进行排序,位于观察窗中间的中值作为输出。然后,丢弃最早的值,取得新的采样,重复上
1、什么是中值滤波中值滤波是对一个滑动窗口内的诸像素灰度值排序,用其中值代替窗口中心象素的原来灰度值,它是一种非线性的图像平滑法,它对脉冲干扰级椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。中值滤波可以过滤尖峰脉冲。目的在于我们对于滤波后的数据更感兴趣。滤波后的数据保留的原图像的变化趋势,同时去除了尖峰脉冲对分析造成的影响。     以一维信号
转载 2024-03-08 18:06:50
72阅读
 7.3.3 自适应滤波器自适应中值滤波器对于7.3.2节所讨论的中值滤波器,只要脉冲噪声的空间密度不大,性能还是可以的(根据经验需Pa和Pb小于0.2)。本节将证明,自适应中值滤波器可以处理更大概率的脉冲噪声。自适应中值滤波器的另一个优点是平滑非脉冲噪声时,试图保留细节,这是传统中值滤波器所做不到的。正如前面几节中所讨论的所有滤波器一样,自适应中值滤波器也工作于矩形窗口区域Sxy内。然
 1.算法功能简介    中值滤波是一种最常用的非线性平滑滤波器,它将窗口内的所有像素值按高低排序后,取中间值作为中心像素的新值。    中值滤波对噪声有良好的滤除作用,特别是在滤除噪声的同时,能够保护信号的边缘,使之不被模糊。 中值滤波对于随机噪声的抑制比均值滤波差一些,但对于脉冲噪声干扰的椒盐噪声,中值滤波是非常有效的。  &nbsp
转载 2024-03-07 12:27:55
27阅读
中值滤波能够有效去除图像中的异常点,具有去除图像噪声的作用。传统中值滤波的算法一般都是在图像中建立窗口,然后对窗口内的所有像素值进行排序,选择排序后的中间值作为窗口中心像素滤波后的值。由于这个做法在每个像素点处都要建立窗口并排序,非常耗时,尤其是有大量的冗余计算。如下图:黄色区域+中间粉色区域是第一个像素为中心建立的滤波窗口,粉色区域+右边蓝色区域为同一行第二个像素为中心建立的滤波窗口。传统做法对
目录前言:本篇学习内容:1.非线性滤波1.1 中值滤波1.2 双边滤波参考文献: 前言:笔者目前在校本科大二,有志于进行计算机视觉、计算机图形学方向的研究,准备系统性地、扎实的学习一遍OpenCV的内容,故记录学习笔记,同时,由于笔者同时学习数据结构、机器学习等知识,会尽量根据自己的理解,指出OpenCV的应用,并在加上自己理解的前提下进行叙述。 若有不当之处,希望各位批评、指正。本篇学习内容:
设计一种能够滤除所有噪声而保持所有重要的图像结构特征完整的滤波器是不可能的,因为没有哪种滤波器能够很好地辨别图像中的哪部分内容对观测者比较重要,哪部分内容不那么重要。中值滤波在这方面做的较好。   中值滤波:将图像中每一点的像素值由对应滤波区域内像素值的中值代替,也就是说,如果将像素点对应的滤波区域内的像素值按升序排列,那么如果整个区域有奇数个像素,则以中间的像素值为中值,如果整个区
原创 2012-04-17 11:24:49
1414阅读
[转]滤波和卷积什么叫滤波:用白话讲就是,一个电信号中有若干种成分,把其中一部分交流信号过滤掉就叫滤波。卷积和滤波的区别:在数字信号处理的理论中,卷给可以说是一种数学运算,而滤波是一种信号处理的方法。卷积就像加权乘法一样,你能说滤波和加权乘法是一样的吗,显然不行;但是滤波最终是由乘法来实现的。自适应滤波就是滤波所用的模板系数会根据图像不同位置自动调整。中值滤波(median filter)简单的说
#目的为记录在自己运行时存在的问题及解决方法,本文基于社区的Eastmount大佬的课程,通过学习,其中也增加了自己的考量和问题的解决。在图片中加入噪音 (1)其中50000代表了的噪声点个数,该数值越大,噪声点越多;采用了np模块中的random.randint,在(0,rows)范围内随机找一点设为x,在(0,cols)范围随便找点设为y,最后令(x,y)坐标的像素点在三个通道上值
参考 进行个人附加修改 均值滤波和和中值滤波都可以起到平滑图像,滤去噪声的功能。均值滤波采用线性的方法,平均整个窗口范围内的像素值,均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。均值滤波对高斯噪声表现较好,对椒盐噪声表现较差。中值滤波采用非线性的方法,它在平滑脉冲噪声方面非常有效,同时它可以保护
最近有一个程序需要做一些数据分析,遇见一个求平均值的需求。数据序列由传感器输出类似如下:[10,12,11,25,9,10,9,45,13,12,10,11,78,12,12,13,10,9]。在这个序列中很明显的25,45,78都是要远远大于其他一些数据的,而我们认为3个数据应该是异常数据。如果是求平均值,这三个大数会拉高平均值,会让我们的结果有一定的偏差。如果数据序列很大,个别异常数据不太会
转载 2024-04-16 10:46:36
113阅读
最近有一个程序需要做一些数据分析,遇见一个求平均值的需求。数据序列由传感器输出类似如下:[10,12,11,25,9,10,9,45,13,12,10,11,78,12,12,13,10,9]。在这个序列中很明显的25,45,78都是要远远大于其他一些数据的,而我们认为3个数据应该是异常数据。如果是求平均值,这三个大数会拉高平均值,会让我们的结果有一定的偏差。如果数据序列很大,个别异常数据不太会影
  • 1
  • 2
  • 3
  • 4
  • 5