上学期学了一些matlab的知识,这学期再用时竟然发现已经忘得差不多了(┬_┬)于是决定重新开始并将它们记录下来,也方便自己以后查漏补缺! M文件编程脚本文件matlab有自己的命令行窗口,对于简单的命令,可以直接在命令行窗口输入,但随着命令行的增加或者命令本身复杂度的增加,再使用命令行就显得有些不便了,这时就需要脚本文件了。可以说,脚本文件是matlab指令集合的封装。函数
基于经验模式分解的特征提取近期看的算法就是EMD的,发现很多Paper用的地方还挺多的,在特征提取方面,来做个以轴承振动信号的故障诊断EMD特征提取的学习总结。建议可以先看文章后半部分基础归类在看前半部分特征提取。EMD方法是从一个简单的假设发展而来,即任何信号都是由不同的简单固有振型组成的。每个线性或非线性模式都有相同数目的极值和过零。在连续的零交点之间只有一个极值。每个模式都应该独立于其他模式
转载
2024-08-23 20:34:27
173阅读
因子分析 (还没有完全弄透) 一、总结:
因子分析其实就是降维。 (
详细笔记见--斯坦福机器学习讲义: 因子分析笔记) 强烈建议回看
因子分析其实就是认为高维样本点实际上是由低维样本 点经过高斯分布、线性变换、误差扰动生成的,因此高维数据可以使用低维来表示。
因子分析是对应
01|概念及原理:EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代分两步完成:E步,求期望(expectation);M步,求极大值(maximization).所以这一算法称为期望极大算法,简称EM算法。(你看懂了吗?反正我第一次看是一脸懵。没关系接下来通过一个例子,你就能明白了。)(三硬币模型) 假设有A,B,C这些硬币正面
缩写为CEEMD的方法其实不止一种,包括互补集合经验模态分解方法[1](Complementary Ensemble Empirical Mode Decomposition,2010)和完全集合经验模态分解方法[2](Complete Ensemble Empirical Mode Decomposition,2011)。本文中所探讨的是上述第一种方法。1. CEEMD(互补集合经验模态分解)的
转载
2024-05-13 16:53:16
230阅读
一、简述: 经验模态分解法(EMD),基于瞬时频率、本征模态函数(Intrinsic Mode Function,IMF)的概念,能够将信号分解为若干个IMF分量,每个IMF表征信号的局部特征。依据的是数据自身的时间尺度特征来进行信号分解,无需预先设定任何基函数,因此具有自适应性。二、基础概念: 
转载
2024-03-27 19:45:02
1144阅读
下面的是matlab的EMD的不带端点延拓的分解程序代码,07新出来的包含复数的emd函数(端点视作极值点)function [imf,ort,nbits] = emd3(varargin)
[x,t,sd,sd2,tol,MODE_COMPLEX,ndirs,display_sifting,sdt,sd2t,r,imf,k,nbit,NbIt,MAXITERATIONS,FIXE,FIXE_H,
转载
2024-05-13 12:59:21
104阅读
内蕴模式函致(IMF)和经验模态分解(EMD)假设满足下面两个条件的信号可看作内蕴模式函数,则:1)在整个数据序列中,极点个数与零点个数相等或最多只相差一个;2)在任意点由局部极大值点构成的包络线和由局部极小值点构成的包络线的平均值为零。与一般的信号相比较,内蕴模式函数具有更好Hilbert变换特性,即由内蕴模式函数得到的瞬时频率一般不会出现负值。为了从一般的信号中提取内蕴模式函数,Huang提出
转载
2024-06-18 15:18:35
54阅读
今天出一期基于SABO-VMD-CNN-SVM的分类诊断。依旧是采用经典的西储大学轴承数据。基本流程如下:首先是以最小包络熵为适应度函数,采用SABO优化VMD的两个参数。其次对每种状态的数据进行特征向量的求取,并为每组数据打上标签。然后将数据送入CNN进行特征提取, 并进行PCA降维后特征可视化,并与未进行CNN特征提取的数据可视化结果进行比较。最后将CNN提取的特征送入SVM进行分类。其他数据
学习笔记记录 文章目录学习笔记记录一、EEMD?二、EEMD的编程实现1.EMD和EEMD的对比2.工具解释总结 EEMD、VMD等类似于EMD分解方法的信号分解方法。“类EMD”方法. 我们总是希望把一个信号写成一系列的子信号的组合,然后加上一个性质不同的信号,所谓的残差信号或者剩余信号。一、EEMD? 为什么要提出EEMD? 解决EMD方法中的模态混叠现象。说到模态混叠,顾名思义就
转载
2024-05-10 13:55:36
235阅读
一、CP分解(CANDECAMP/PARAFAC) 这是较为古老的一种张量分解方法。最早的研究历史可以追溯到1927年。在上一节,学习向量乘积的时候,我们看到两个向量外积产生一个矩阵。我们可以推断出,三个向量做外积得出一个三维张量(其实是一种extension)。 数学上,我们可以用以下公式表示:我们可以将三个向量的外积结果以张量的三种矩阵化形式写出:matlab实例程序如下我们都知道,矩阵的秩是
转载
2024-09-03 08:57:56
108阅读
因子分析 (还没有完全弄透)一、总结:因子分析其实就是降维。 (详细笔记见--斯坦福机器学习讲义: 因子分析笔记) 强烈建议回看 因子分析其实就是认为高维样本点实际上是由低维样本 点经过高斯分布、线性变换、误差扰动生成的,因此高维数据可以使用低维来表示。因子分析是对应无监督学习问题,因为用到EM算法,还是有EM算法的,E步都是求出隐性变量Z,而z表示可能的类别,所以凡是有EM算
转载
2024-06-09 00:27:31
51阅读
代码链接:github代码1.任务要求(1)将数据集Case1-classification.zip中的email文件转换成列表数据,利用tf-idf方法提取其中的特征(2)使用SVM分类文本类型,通过5折交叉验证检测分类结果,输出precision, recall, F1-score(可以使用LIBSVM实现SVM)2.数据预处理与特征提取数据预处理:Emails_classify/Emails
% EMD 计算经验模式分解%%% 语法%%% IMF = EMD(X)% IMF = EMD(X,...,'Option_name',Option_value,...)% IMF = EMD(X,OPT
原创
2022-10-10 16:05:30
848阅读
原理与计算步骤数据准备数值格式),列为年份时间(数值格式)。部分数据如下:运行结果及分析空间分布特征分析 前5个特征向量特征值的累积贡献率达到85.4%,但只有前两个特征根的误差范围不重叠通过North显著性检验,累积贡献率接近75%,因此这两个特征根可以很好地解释福建省近1960-2013年降水的两种分布类型。表1 福建省年降水量EOF分解的前5个特征向量
转载
2024-07-11 17:23:41
91阅读
在专栏之前的文章里对EMD进行了一系列的介绍。在实际中也见到不少同学将该方法应用于各个领域,除了博主研究的故障诊断方向,还有用作去噪、图像处理以及金融分析的。同时也不断有同学想了解诸如EEMD、VMD等类似于EMD分解方法的信号分解方法。所以从今天开始,准备梳理一下各种“类EMD”方法,帮助准备研究这个方向的同学们理一理头绪。关于为何要进行信号分离研究,有一篇讲的很好的文章[1],不
转载
2024-08-23 17:37:44
838阅读
来帮忙填坑了。今天接着之前讲过的EEMD和CEEMD,来介绍一下“类EMD”分解方法的第三篇。1. CEEMDAN(自适应噪声完备集合经验模态分解)的概念CEEMDAN[1](Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)的中文名称是自适应噪声完备集合经验模态分解,要注意这个方法并不是在CEEMD方法上改进而来
转载
2024-05-07 14:54:38
321阅读
之前我们有了十几篇文章讲述了EMD算法的基础理论、IMF的含义、EMD的MATLAB实现方法,EEMD、CEEMD、CEEMDAN、VMD、ICEEMDAN、LMD、EWT的理论及代码实现,还讲到了HHT算法理论及其代码实现。下面我们将正式进入下一个环节:分解完成之后要怎样处理?今天介绍几个指标,可以作为辅助筛选分量或开展分析的依据 。一、方差贡献率(方差比)方差贡献率即IMF方差与原序列方差的比
转载
2024-05-08 12:02:01
502阅读
% EMD 计算经验模式分解
%
%
% 语法
%
%
% IMF = EMD(X)
% IMF = EMD(X,...,'Option_name',Option_value,...)
% IMF = EMD(X,OPTS)
% [IMF,ORT,NB_ITERATIONS] = EMD(...)
%
%
% 描述
%
%
% IMF = EMD(X) X是一个实矢量,计算方法参考[1],计算结果
IMF与EMD简介
转载
2023-02-02 08:43:43
983阅读