基于matlab暗通道之图像去雾上述伪代码中,I表示导向图像(guided image),p为输入图像(input image),q为输出图像(output image),表示均值滤波,r为窗口半径。 代码:function R = anyuanse(m_img)
% 原始图像
I=double(m_img)/255;
% 获取图像大小
[h,w,c]=size(I);
win_siz
转载
2023-07-05 13:31:43
118阅读
何恺明的暗通道先验(dark channel prior)去雾算法是CV界去雾领域很有名的算法,关于该算法的论文"Single Image Haze Removal Using Dark Channel Prior"一举获得2009年CVPR最佳论文。
原创
2021-07-09 14:17:12
1536阅读
点赞
1评论
论文下载地址:点击进入 去雾效果:首先作者是统计了五千多副图像的特征,验证了暗通道先验理论的普遍性。暗通道先验:在绝大多数的非天空图像区域中,一些像素总会有至少一个颜色通道具有很低的值。 暗通道的数学定义如下: 式中Jc表示彩色图像的每个通道 ,Ω(x)表示以像素X为中心的一个窗口。 公式含义:对图像做最小值滤波,然后求出每个像素在RGB通道分量中的最小值,存入到一副和原始图像大小相同的的
1 简介雾实际上是由悬浮颗粒在大气中的微小液滴构成的气溶胶,常呈现乳白色,其底部位于地球表面,所以也可以看作是接近地面的云。霭其实跟雾区别不大,它的一种解释是轻雾,多呈现灰白色,与雾的颜色十分接近。广义的雾包括雾、霾、沙尘、烟等一切导致视觉效果受限的物理现象。由于雾的存在,户外图像质量降低,如果不处理,往往满足不了相关研究、应用的要求。在雾的影响下,经过物体表面的光被大气中的颗粒物吸收和反射,导致
原创
2022-01-13 23:18:03
502阅读
11.1 暗通道优先的图像去雾算法图像增强与图像修复二者之间有一定交叉,尽管它们一个强调客观标准,一个强调主观标准,但毕竟最终的结果都改善了图像的质量。图像去雾就是这两种技术彼此交叉领域中最典型的代表。如果将雾霾看作是一种噪声,那么去除雾霾的标准显然是非常客观的,也就是要将图像恢复至没有雾霾下所获取的情况。但是如果将在雾霾环境下拍摄的照片就看作是一种图像本来的面貌,那么去雾显
转载
2024-05-24 22:08:27
10阅读
1.背景介绍基于暗通道先验的单幅图像去雾算法来自于何凯明博士2009年的CVPR论文:《Single Image Haze Removal Using Dark Channel Prior》,2009年的CVPR共收到约1450篇投稿,其中393篇文章被接收,接收率为26%。只有一篇文章被选为那年的最佳论文。这是CVPR创立25年以来首次由中国人获得这个奖项。他根据Dark Object Subt
转载
2024-04-01 13:51:04
80阅读
去雾基于图像增强不对图像降质本质原因进行研究,认为有雾图像模糊是图像对比度下降。通过提高对比度来改善图像效果。该方法不能彻底去除雾气,可能会有雾气残剩、细节模糊、色彩比例失衡等现象。主要方法包括:直方图均衡化、小波变换等等。直方图均衡化优点:简单可行,单景深图像复原效果好。局部细节增强。缺点:难以反映多景深图像中景深变化,局部块效应出现。小波变换通过多尺度,图像对比度增强。认为雾对图像高频部分影响
转载
2024-01-25 08:58:37
174阅读
1 简介雾实际上是由悬浮颗粒在大气中的微小液滴构成的气溶胶,常呈现乳白色,其底部位于地球表面,所以也可以看作是接近地面的云。霭其实跟雾区别不大,它的一种解释是轻雾,多呈现灰白色,与雾的颜色十分接近。广义的雾包括雾、霾、沙尘、烟等一切导致视觉效果受限的物理现象。由于雾的存在,户外图像质量降低,如果不处理,往往满足不了相关研究、应用的要求。在雾的影响下,经过物体表面的光被大气中的颗粒物吸收和反射,导致
原创
2022-03-03 18:22:41
551阅读
一、简介1 Retinex1.1 理论Retinex理论始于Land和McCann于20世纪60年代作出的一系列贡献,其基本思想是人感知到某点的颜色和亮度并不仅仅取决于该点进入人眼的绝对光线,还和其周围的颜色和亮度有关。Retinex这个词是由视网膜(Retina)和大脑皮层(Cortex)两个词组合构成的.Land之所以设计这个词,是为了表明他不清楚视觉系统的特性究竟取决于此两个生理结构中的哪一个,抑或是与两者都有关系。Land的Retinex模型是建立在以下的基础之上的:(1)真实世界是无颜色
原创
2021-11-08 10:50:25
240阅读
一、简介1 Retinex1.1 理论Retinex理论始于Land和McCann于20世纪60年代作出的一系列贡献,其基本思想是人感知到某点的颜色和亮度并不仅仅取决于该点进入人眼的绝对光线,还和其周围的颜色和亮度有关。Retinex这个词是由视网膜(Retina)和大脑皮层(Cortex)两个词组合构成的.Land之所以设计这个词,是为了表明他不清楚视觉系统的特性究竟取决于此两个生理结构中的哪一个,抑或是与两者都有关系。Land的Retinex模型是建立在以下的基础之上的:(1)真实世界是无颜色
原创
2021-11-08 11:03:43
118阅读
基于暗通道优先的单幅图像去雾新算法介绍和源代码(matlab/C++) 基于暗通道优先的单幅图像去雾算法(Matlab/C++)算法原理: 参见论文:Single Image Haze Removal Using Dark&nb
转载
2024-04-24 18:54:35
394阅读
一 原论文方法的局限性谈到优化,我们首先需要了解原论文的方法有何局限,在实际编码测试中我发现了以下的三点局限:1.太过耗时 在上一篇中,在透射图的精细化(refine)中原论文使用的是softmatting方法,而我编码使用的是引导滤波,一是因为softmatting我看不太懂,二是因为softmatting实在是太耗时间了,而引导滤波的时间复杂度是常数并且其效果不比softmattin
转载
2024-08-12 10:56:20
111阅读
一、简介1 Retinex1.1 理论Retinex理论始于Land和McCann于20
原创
2022-04-07 18:19:16
730阅读
文章目录一、前言二、暗通道去雾原理一、前言何恺明的暗通道先验(dark channel prior)
原创
2022-08-26 10:33:26
3594阅读
## 暗通道去雾 Python 实现
### 1. 总览
在这篇文章中,我将教给你如何使用 Python 实现暗通道去雾算法。暗通道去雾是一种常用的图像去雾算法,通过识别图像的暗通道来估计场景中的气体浓度,从而实现去除雾霾的效果。
### 2. 算法流程
下面是暗通道去雾算法的主要步骤:
| 步骤 | 描述 |
| --- | --- |
| 1 | 导入所需的库和模块 |
| 2 |
原创
2023-11-27 06:53:02
133阅读
# Python暗通道去雾
在计算机视觉领域,图像去雾是一个重要的问题。当拍摄的图像中存在雾霾或雾气时,图像的质量和细节会受到很大的影响。为了改善这种情况,研究人员提出了许多图像去雾算法。其中,Python暗通道去雾算法是一种常用且有效的方法。
## 什么是暗通道?
在介绍Python暗通道去雾算法之前,我们首先需要了解什么是暗通道。在一幅有雾图像中,原本的亮度和颜色会受到雾霾的影响而变得模
原创
2023-07-21 00:05:29
173阅读
暗通道去雾算法原理及实现 1. 算法原理。暗通道。
所谓暗通道是一个基本假设,这个假设认为,在绝大多数的非天空的局部区域中,某一些像素总会有至少一个颜色通道具有很低的值。这个其实很容易理解,实际生活中造成这个假设的原因有很多,比如汽车,建筑物或者城市中的阴影,或者说色彩鲜艳的物体或表面(比如绿色的树叶,各种鲜艳的花,或者蓝色绿色的睡眠),颜色较暗的物体或者表面,这些景物的暗通道总是变现为
转载
2024-01-24 11:00:52
137阅读
上述伪代码中,I表示导向图像(guided image),p为输入图像(input image),q为输出图像(output image),表示均值滤波,r为窗口半径。** %--------------------------------------clc;clear;close all; %% -----------图像去雾算法----------------%% 加载图片img = imread('foggy_bench.jpg');figure;imshow(img);...
原创
2021-11-08 11:41:00
807阅读
一、简介1 暗通道先验图像去雾方法1.1 光线透射率模型光在传播中由于散射使得从光源发出的辐射只有部分能到达接收传感器,其他则被散射到传播介质中。假设距离较小时散射光强与距离是线性关系,当光源距离传感器无限接近时,光的衰减值可近似为:Br,其中β为空气的散射系数;r为光源与传感器间的距离。大气密度均匀时,光线透射率的数学模型为:式中:D为场景深度;t为光线透射率,用于量化传感器接收光强与光源表面光强间的比例关系,即没有被散射的辐射与光源辐射间的比例关系。1.2 暗通道先验理论基于统计大量清晰图
原创
2021-11-08 13:43:23
61阅读
一、简介1 暗通道先验图像去雾方法1.1 光线透射率模型光在传播中
原创
2022-04-07 14:25:23
340阅读