opencv图像裁剪 在图像处理中,我们经常根据需要截取图像中某一区域做处理,而不是针对整幅图像,这样会提高运算速度。当然,opencv有现成的截取函数供我们调用,但是考虑的运行平台不同(DSP芯片移植等),直接调用函数不现实。小生针对这一情况做了以下工作,不调用相关函数,截取到指定位置指定大小的图像,希望大家批评指正。c++代码:#include "stdafx.h" #include "
转载 2023-07-06 18:59:11
169阅读
1.2 Mat的内存管理图像数据量大,不妥善管理好内存会产生很大的问题。OpenCV1.X中多采用C的结构,需要用户自己管理内存,在图像不再使用时调用CvRelease。OpenCV2.X中采用C++面向对象的方式,内存可以由自动申请和释放。 1.2.1 图像头与图像内容OpenCV中,图像的头与图像内容是分开的。如下面这段代码:Mat A = Mat::zeros(800,600, C
转载 2024-04-23 11:02:44
85阅读
基于VS与OpenCV的模板匹配学习(4):手写OpenCV matchTemplate() 文章目录基于VS与OpenCV的模板匹配学习(4):手写OpenCV matchTemplate()前言一、OpenCV templmatch源码分析二、平方差度量计算三、高斯金字塔3.1 创建高斯金字塔模板3.2 高斯金字塔策略3.3 findMatchingPosition_GrayValueBase
一、矩阵 Mat I,img,I1,I2,dst,A,B; double k,alpha;Scalar s; //Scalar 是一个结构体,常用来存储像素,比如Scalar s; s=cvGet2D(pImg,x,y); s.val[0],s.val[1],s.val[2]就是对应的图像BGR的值1.加法 I=I1+I2;//等同add(I1,I2,I); add(I1,I2,dst
转载 2024-07-22 17:12:33
44阅读
1 cv::Mat    cv::Mat是一个n维矩阵类,声明在<opencv2/core/core.hpp>中。 class CV_EXPORTS Mat { public: //a lot of methods … /*! includes several bit-fields: - the ma
OpenCV学习之CvMat的用法详解及实例    CvMat是OpenCV比较基础的函数。初学者应该掌握并熟练应用。但是我认为计算机专业学习的方法是,不断的总结并且提炼,同时还要做大量的实践,如编码,才能记忆深刻,体会深刻,从而引导自己想更高层次迈进。1.初始化矩阵: 方式一、逐点赋值式: CvMat* mat = cvCreateMa
转载 2024-03-07 19:03:14
83阅读
Public Member Funcchannels()Mat矩阵元素拥有的通道数。depth()用来度量每一个像素中每一个通道的精度,但它本身与图像的通道数无关。 depth数值越大,精度越高。 Mat.depth()得到的是一个0~6的数字,分别代表不同的位数,对应关系如下:enum{CV_8U=0,CV_8S=1,CV_16U=2,CV_16S=3,CV_32S=4,CV_32F=5,CV_
转载 2024-06-04 11:11:19
82阅读
//<学习OPENCV>第3章 //数据结构基本操作 #include<cv.h> #include<iostream> #include<opencv2/core/core.hpp> #include<opencv2/highgui/highgui.hpp> #include <cxcore.h> #include<
转载 2024-04-17 16:01:32
152阅读
前言from PIL import Image # 打开图片,path路径 img=Image.open(path) # 如果我要剪切图片,我可以用crop方法 # 可是,我怎么知道我需要剪切的图片的位置, # crop方法需要 # 左上角的坐标,右下角坐标可是,我怎么会知道,我需要剪切的图片的左、右坐标?难道慢慢尝试,还是要用opencv去寻找轮廓,可是假如我需要的地方,opencv就是找不到,
 1.Mat与lpIlmage对象Mat对象是OpenCV2.0之后引进的图像数据结构、自动分配内存、不存在内存泄漏问题,是面向对象的数据结构。Mat分头部和数据部分。lpllmage是从2001年OpenCV发布之后就一直存在的,是C语言风格的数据结构,需要开发者自己分配和管理内存,容易造成内存泄漏。2.Mat中的常见函数(1)构造函数(2)其他方法void copyTo(Mat ma
Opencv3-StudyOpencv学习笔记(八) -- 图像色彩空间转换yuv422转opencv mat显示OpenCv2 学习笔记(1) Mat创建、复制、释放OpenCv学习笔记(二)--Mat矩阵(图像容器)的创建及CV_8UC1,CV_8UC2等参数详解Mat的几种初始化Mat类之选取图像局部区域画矩形框(普通的与旋转的矩形框)绘制连续多个矩形:捕获右上角×按钮关闭显示窗口事件Op
一:显示图像并保存#include<opencv2/opencv.hpp> #include<iostream> using namespace std; using namespace cv; int main() { Mat src = imread("D:/images/011.jpg",IMREAD_GRAYSCALE);//读取进来的数据以矩阵的形势,第二
关于深拷贝和浅拷贝:深拷贝和浅拷贝是根据拷贝的变量是否重新分配内存来区分的,当要重新分配内存来存放拷贝的变量时,就是深拷贝,反之如果拷贝不复制数据只创建矩阵头则为浅拷贝。   举个栗子:加如路人甲有一份文件放在储物柜A中,某时刻路人乙想阅览这份文件或者文件中的一部分(ROI),此时路人乙有两种选择:1 从甲那获知储物柜A的地址并记住(创建矩阵头),根据这个信息去储物柜A阅览(查
转载 2024-04-04 11:29:11
40阅读
目录通过at方法读取Mat类矩阵中的元素通过指针ptr读取Mat类矩阵中的元素通过迭代器访问Mat类矩阵中的元素通过矩阵元素地址定位方式访问元素 对于Mat类矩阵的读取与更改,我们已经在矩阵的循环赋值中见过如何用at方法对矩阵的每一位进行赋值,这只是OpenCV提供的多种读取矩阵元素方式中的一种,本小节将详细介绍如何读取Mat类矩阵中的元素,并对其数值进行修改。在学习如何读取Mat类矩阵元素之前
转载 2024-03-24 08:53:41
147阅读
1.Mat是什么       Mat是一种图像容器,是二维向量,灰度图的Mat一般存放<uchar>类型,RGB彩色图像一般存放<Vec3b>类型。       单通道灰度图数据存放样式: RGB三通道彩色图存放形式不同,每列并列存放通道数量的子列(注意通道数量反转为了BGR):&nb
转载 2024-06-01 21:42:50
101阅读
MAT 本博文介绍了Mat的使用,基本上是参照opencv_tutorials翻译的,可能存在一些理解上的偏差,欢迎指正。 OpenCV在2001年开始起使用。那时候库文件是用C的接口写的,用一个IplImage的C结构存储图像,在老版本的教科书和说明书中你仍可以看到。这种方式导致了内存管理方面的问题,用户不得不自己去释放内存空间。不过为方便使用,现在opencv已经开发了C+
本文为原创,若有错误的地方欢迎批评指正! 先说区别,它们三个都可以代表和显示图像,但是Mat类型侧重于数学计算,出现在opencv2.0版本之后,其用法与Matlab中的操作非常类似,opencv对其数学计算进行了优化。CvMat和IplImage更侧重于图像,opencv对其图像的操作进行了优化。CvMat从基类CvArr派生而来,IplImage又从CvMat派生而来。接下来就它们结
本博客所用OpenCV版本为2.4.3,运行环境为Visual Studio2012。学习OpenCV是一个比较漫长的过程,希望我能够坚持!(一)从Mat讲起MatOpenCV中用于存放图像的数据结构。我们知道,图像在计算机中是以数组的形式存放的。Mat正是描述的这样一种数据结构。通过调用相关方法,我们能够实现对图像的输入输出以及一些操作。同时,Mat又不止可以作为图像容器,它也可以作为一种比较
本文讲述了OpenCV中几种访问矩阵元素的方法,在指定平台上给出性能比较,分析每种矩阵元素访问方法的代码复杂度,易用性。一、预备设置本文假设你已经正确配置了opencv的环境,为方便大家实验,在文中也给出了编译源程序的Makefile,其内容如代码段1所示。采用如代码段2所示的计时函数,这段代码你可以在我之前的博文中找到,abtic() 可以返回微秒(10^-6秒)级,而且兼容Windows和Li
转载 2024-06-05 19:58:57
68阅读
Mat初始化   为空不赋值     cv::Mat skeleton3D(4, 17, CV_64F);直接赋值:     double a[] = {1,2,3,4};     Mat test(2,2,CV_64_F);     cv::Mat mtest(3, 1, CV_64F, cv::Scalar::all(0));     cv::Mat mtest(3, 1, CV_64F, c
转载 2024-04-09 16:27:36
158阅读
  • 1
  • 2
  • 3
  • 4
  • 5