numpy实现k-means实现1实现2问题1:欧氏距离和夹角余弦值的区别?欧式距离公式夹角余弦公式 实现1import numpy as np import matplotlib.pyplot as plt '''标志位统计递归运行次数''' flag = 0 '''欧式距离''' def ecludDist(x, y): return np.sqrt(sum(np.square(
一、你知道中度量距离的方法有哪些吗? 1)欧式距离 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。即两点之间直线距离,公式比较简单就不写了 应用场景:适用于求解两点之间直线的距离,适用于各个向量标准统一的情况 2)曼哈顿距离(Manhattan Distance) 从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,实
一、第一个无监督的算法1、无监督学习 有X 没有Y 利用X相似性 对大量未标注的数据集,按内在相似性划分为多个类别,别内相似度大,之间相似度小 2、距离的概念 2.1欧几里得距离(欧式距离) 假设超人要从A点到B点,可以直接飞过去,那飞过去的距离就是欧式距离。 2.2曼哈顿距离 假设普通人要从A点到B点,那只能绕着建筑物走,这个距离就是曼哈顿距离 2.3闵可夫斯基距离 闵氏距离不是一
剑指Offer——网易笔试之解救小易——曼哈顿距离的典型应用前言            首先介绍一下曼哈顿曼哈顿是一个极为繁华的街区,高楼林立,街道纵横,从A地点到达B地点没有直线路径,必须绕道,而且至少要经C地点,走AC和 CB才能到达,由于街道很规则,ACB就像一个直角3角形,AB是斜边,AC和CB是直角边,根据毕达格拉斯
       层次算法使用数据的联結规则,对数据集合进行层次似的层次可以分为两大类,自顶向下的分裂和自顶而上的合并。分裂是将所有的对象看成一个,然后将其不断分解直至满足终止条件。后者与前者相反,它先将每个对象各自作为一个原子,然后对这些原子逐层进行,直至满足终止条件。代表算法有:CURE、CHAMELEON、ROCK
目录前言几种常见距离度量方法欧几里得距离简介公式曼哈顿距离(Manhattan Distance)简介公式应用场景切比雪夫距离简介公式闵科夫斯基距离简介公式缺点马氏距离简介公式汉明距离简介应用:余弦相似度简介公式杰卡德距离皮尔森相关系数简介公式编辑距离K-L散度几种常见的距离度量比较与应用曼哈顿距离、欧氏距离、皮尔逊相关系数距离度量,越小越相似相似度度量,越大越相似欧氏距离与余弦相似度前言在机器学
基于层次方法 简介基于层次方法 概念聚合层次 图示划分层次 图示基于层次方法 切割点选取族间距离 概念族间距离 使用到的变量族间距离 最小距离族间距离 最大距离族间距离 中心点距离族间距离 平均距离基于层次 ( 聚合层次 ) 步骤基于层次 ( 聚合层次 ) 算法终止条件族半径 计算公式基于层次总结
引言最近在读西瓜书,查阅了多方资料,恶补了数值代数、统计概率和线代,总算是勉强看懂了西瓜书中的公式推导。但是知道了公式以后还是要学会应用的,几经摸索发现python下的sklearn包把机器学习中经典的算法都封装好了,因此,打算写几篇博客记录一下sklearn包下的常用学习算法的使用,防止自己以后忘了,嘿嘿。1.西瓜书中197页对“”做了详细的解释,以下为摘录:在无监督学习中,训练样本的标
层次算法的主要优点在于我们无需事先知道最终所需集群数量。很遗憾的是,网上并没有很详细的教程讲述如何使用 SciPy 的层次包进行层次。本教程将帮助你学习如何使用 SciPy 的层次模块。命名规则在我们开始之前,我们先设定一下命名规则来帮助理解本篇教程:X - 实验样本(n 乘 m 的数组)n - 样本数量m - 样本特征数量Z - 集群关系数组(包含层次信息)k - 集群数量导
转载 2024-02-29 15:13:06
159阅读
一、定义就是对大量未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小,即高,低。相似度怎么衡量呢? 相似度与距离成负相关 ,所以我们通常用样本间的距离来衡量其相似度。不同的场景,有不同的样本内容,但最终都会把样本表示成向量。 向量的距离怎么表示呢?(假设空间内有两个n维(n>=2)向量(x1,x2,....,xn)
前言今天试了下用python实现层级,感觉还是有不少问题。转专业的一只小菜鸡,初学代码,写的很简陋,希望各位大牛能指出不足之处。代码输入是一个长度可选的列表。这里用random随机生成,10个数据,并把数据用字母'a'、'b'等依次标记。算法实现中用树结构存储数据。树的每一个节点都是一个数据集,它的左右子树代表该节点包含的两个数据集。计算所有数据相互的距离(x1.value - x2.valu
最近使用MDTraj对分子动力学轨迹进行聚类分析,接触到了python中的实现,故将CSDN上一篇关于的博客搬运至此,以作备忘:scipy cluster库简介scipy.cluster是scipy下的一个做的package, 共包含了两类聚方法:矢量量化(scipy.cluster.vq:支持vector quantization 和 k-means 方法层次(scipy.
前言K-means ,介绍了 K-means 算法以及一些优化改进的算法,通过此了解聚类分析,接下来我们进一步的介绍聚类分析的其他方法。本篇代码可见:Github一、层次\quad\quad 层次技术是第二重要的方法。层次方法对给定的数据集进行层次的分解,直到满足某种条件为止,传统的层次算法主要分为两大类算法:凝聚的层次:AGNES算法(AGglomerative N
转载 2023-08-15 14:48:49
564阅读
层次步骤:假设有N个待的样本,对于层次来说,基本步骤就是:1、(初始化)把每个样本归为一,计算每两个之间的距离,也就是样本与样本之间的相似度;2、按一定规则选取符合距离要求的类别,完成间合并;3、重新计算新生成的这个与各个旧之间的相似度;4、重复2和3直到所有样本点都归为一,结束。随机森林步骤:从原始训练集中使用Bootstraping方法随机有放回采样选出m个样本,共进行
层次和DBSCAN  前面说到K-means算法,K-Means是一种分散性算法,本节主要是基于数据结构的算法——层次和基于密度的算法——DBSCAN两种算法。1.层次  下面这样的结构应该比较常见,这就是一种层次的树结构,层次是通过计算不同类别点的相似度创建一颗有层次的树结构,在这颗树中,树的底层是原始数据点,顶层是一个的根节点。  创建这样一棵树的方
转载 2023-08-09 13:08:52
749阅读
在本文中,我们将一起探索如何使用Python进行汉明距离层次的代码实现。这个过程将会涵盖背景定位、参数解析、调试步骤、性能调优、排错指南以及生态扩展。通过以下的详细解析,您将对这个主题有一个全面的了解。 ## 背景定位 在机器学习和数据分析领域,层次是一种重要的分类技术。它通过将数据分层次、逐步聚合的方式,帮助我们更好地理解数据间的相似性。特别是在处理基于汉明距离(即分类数据的相异性度
原创 5月前
54阅读
各种距离的计算与python代码实现 文章目录各种距离的计算与python代码实现前言曼哈顿距离欧氏距离切比雪夫距离闵可夫斯基距离马氏距离余弦距离汉明距离代码实现 前言关于距离这个概念,在我们很小的时候就开始接触了,不过我们最长提到的距离一般是欧式距离。它用来衡量两个点之间的远近程度,其实从另一个角度出发距离也可以描述点之间的相似度因此有很多的算法都是基于距离进行计算的。为什么要有这么多距离
积累+学习综述所列的距离公式列表和代码如下:闵可夫斯基距离(Minkowski Distance)欧氏距离(Euclidean Distance)曼哈顿距离(Manhattan Distance)切比雪夫距离(Chebyshev Distance)夹角余弦(Cosine)汉明距离(Hamming distance)杰卡德相似系数(Jaccard similarity coefficient)皮尔逊
写在前面:健忘星人自学笔记,仅供参考简单易懂的阅读资料 层次-概念全解 - 万勇's 前面的文章我们分别介绍了 K-means , 密度,谱,其中谱的难度比较大,要求有一定的矩阵学习基础,今天不妨轻松一下,学习一个较为简单的“层次”。正文:一、层次基本原理层次方法(Hierarchical Clustering),从字面上理解,其
''' 凝聚层次算法:首先假定每个样本都是一个独立的,如果统计出来的数大于期望的数,则从每个样本出发寻找离自己最近的另一个样本, 与之聚集,形成更大的,同时令总数减少,不断重复以上过程,直到统计出来的数达到期望值为止。 凝聚层次算法的特点: 1.数k必须事先已知。借助某些评
  • 1
  • 2
  • 3
  • 4
  • 5