目录用线性回归做分类sigmoid模型假设求解-梯度提升法优点与其他模型的比较与线性回归一个角度区别与联系与最大熵模型与SVM1、LR和SVM有什么相同点2、LR和SVM有什么不同点与朴素贝叶斯两者的不同点两者的相同点模型细节适合离散特征为什么使用sigmoid函数?指数族分布广义线性模型定义为何使用最大似然估计而不用均方误差? 用线性回归做分类线性回归的输出是一个数值,而不是一个标签,显然不能
 逻辑回归在之前的课程中我们已经学习接触过相关的回归模型了,我们知道回归模型是用来处理和预测连续型标签的算法。然而逻辑回归,是一种名为“回归”的线性分类器,其本质是由线性回归变化而来的,一种广泛使用于分类问题中的广义回归算法。要理解逻辑回归从何而来,得要先理解线性回归。线性回归是机器学习中最简单的的回归算法,它写作一个几乎人人熟悉的方程(为了更好理解本节后面的讲解到的sigmod函数,下
逻辑回归(Logistic regression)三种梯度下降策略:批量梯度下降:容易得到最优解,但是由于每次考虑所有样本,速度很慢随机梯度下降:每次找一个样本,迭代速度快,但不一定每次都朝着收敛的方向小批量梯度下降:每次更新选择一小部分数据来算,实用对于 逻辑回归 不了解的,可以看看我写的这篇文章,或许可以帮助到你。URL: 逻辑回归算法-推导学习详细案例:根据学生的两门课成绩,决定学生是否被录
一、定义二分类问题(也可以用于多分类),具有简单、可并行化、解释性强的特点,目前在各个领域使用的都非常频繁。逻辑回归的本质是假设数据服从伯努利分布,然后使用极大似然估计做参数的估计(类似最小二乘估计),再通过Sigmoid函数将预测值映射到(0,1)范围内,根据预测值的所在区间进行分类。二、模型理论        极大似然估计    &n
机器学习——逻辑回归算法代码实现前言一、逻辑回归是什么?二、代码实现1.数据说明2.逻辑回归代码 前言 最近准备开始学习机器学习,后续将对学习内容进行记录,该文主要针对逻辑回归代码实现进行记录! 一、逻辑回归是什么?逻辑回归概念篇可看博主之前的文章,传送门二、代码实现1.数据说明你想根据两次考试的结果来决定每个申请人的录取机会。你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集。
  1、逻辑回归概述¶  逻辑回归假设数据服从伯努利分布,通过极大化似然函数方法,运用梯度下降来求解参数,来达到将数据二分目的。本质上就是LR模型可以被认为就是一个被Sigmoid函数(logistic方程)所归一化后的线性回归模型 。 Logistic Regression方程如下: $$P(y=1|x;\theta)=\frac{1}{1+e^
不是搞算法的,但最近用到这个,所以按个人的理解总结一下要点,可能有理解上的错误,欢迎指正批评。目前场景是用于可能性预测。1.逻辑回归模型计算出来的是相对可能性,而非概率,所以非常适合topN选择等问题;如果用于分类,则其用于分割的阈值通过指标参数确定。总体上来说,更适合求topN。2.仅能用于线性问题,其实很多数学不是很好的人,对这个理解不深入,在使用Logistic Regression时注意选
目录引言逻辑回归Matlab代码效果展示 Python代码效果展示 C++代码效果展示引言        本专栏第三个机器学习算法:逻辑回归算法,全部代码通过Github下载,使用Matlab,Python以及C++三种语言进行实现。其中Matlab的代码可以直接运行,Python与C++的代码需要
转载 2023-10-05 14:17:16
148阅读
目录线性回归1. 可以使用tushare爬取股票代码2. 零散的小知识逻辑回归逻辑回归的操作步骤分析数据数据预处理训练模型进行预测作业题1. 处理其他数据的方法2. 过采样处理4. 不过采样结果线性回归其他的前面都学了,新的知识1. 可以使用tushare爬取股票代码import tushare as ts df = ts.get_hist_data('000001') print(df) df.
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达尽管对于机器学习来说,理论是非常重要的内容,但是持续的理论学习多少会有些审美疲劳。今天,我们就试着用代码来简单实现一下逻辑回归,也方便大家更好地理解逻辑回归的原理,以及机器学习模型在实践中是怎么运作的。一、逻辑回归算法步骤简述构建一个逻辑回归模型有以下几步:收集数据:采用任意方法收集数据准备数据:由于需要进行距离计算,因此我们要
转载 2023-07-22 20:48:31
170阅读
逻辑回归(Logistic Regression)逻辑回归(Logistic Regression)是通过回归来解决分类问题,为监督学习方法,比较线性回归逻辑回归,线性回归当变量有较好的线性关系时,比如收入与消费等,通过拟合样本点,来预测模型的未来区域,而逻辑回归主要解决当因变量为分类变量,比如类别为患病与不患病,手机偏好喜欢iPhone、三星或者小米等,如图显示仅有两个类别的时,这个时候传统线
按照机器学习实战的python代码,用java重写LR的梯度上升算法: package com.log; import java.io.BufferedReader; import java.io.FileInputStream; import java.io.InputStreamReader; import java.io.File; import java.util.
转载 2023-09-20 12:47:13
41阅读
1. 前言在机器学习的分类问题领域中,有两个平分秋色的算法,就是逻辑回归和支持向量机,这两个算法个有千秋,在不同的问题中有不同的表现效果,下面我们就对它们的区别和联系做一个简单的总结。2. LR和SVM的联系都是监督的分类算法。都是线性分类方法 (不考虑核函数时)。都是判别模型。3. LR和SVM的不同 损失函数的不同,LR是对数损失函数,SVM是hinge损失函数。SVM不能产生概率,LR可以产
1. 算法原理logistic/sigmoid函数作用:把取值范围从负无穷到正无穷的公式计算结果,压缩到0和1之间,这样的输出值表达为“可能性”更直观。逻辑回归算法用于估计预测目标的可能性,它属于软分类算法,即最终得到的是一个具体的概率,而不仅仅是“是”或“不是”这样的二分类结果;逻辑回归能提供一个样本属于正类的可能性是多少,比如假设对于样本x,回归系数w,(w^T是向量w的转置),使用
逻辑回归模型(Logistic Regression, LR)基础 逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心。本文主要详述逻辑回归模型的基础,至于逻辑回归模型的优化、逻辑回归与计算广告学等,请关注后续文章。1 逻辑回归
转载 2024-08-20 22:27:08
107阅读
1、线性回归   由上图我们可以看到,线性回归能够对连续值结果进行拟合并预测。其回归方程为: y=β0+β1x1+β2x2+...+βnxn=xTβ y = β 0
用自己的话描述一下,什么是逻辑回归,与线性回归对比,有什么不同?逻辑回归是预测结果是界于0和1之间的概率,可以适用于连续性和类别性自变量,容易使用和解释。逻辑回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两
转载 2023-08-09 15:32:04
118阅读
1.分类问题 在分类问题中,你要预测的变量是离散的值,我们将学习一种叫做逻辑回归 (Logistic Regression) 的算法,这是目前最流行使用最广泛的一种学习算法。在分类问题中,我们尝试预测的是结果是否属于某一个类(例如正确或错误)。 我们从二元的分类问题开始讨论。 我们将因变量(dependent variable)可能属于的两个类分别称为负向类(negative class)和正向类
逻辑回归的常见面试点总结:(逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的。)逻辑回归和线性回归的联系和区别参考原文:逻辑回归:线性回归可以预测连续值,但是不能解决分类问题,我们需要根据预测的结果判定其属于正类还是负类。所以逻辑回归就是将线性回归的(−∞,+∞)结果,通过sigmoid函数映射到(0,1)之间。线性回归决策函数:hθx=θ
转载 2024-05-20 16:30:32
44阅读
1点赞
1、LR和SVM有什么相同点  (1)都是监督分类算法,判别模型;  (2)LR和SVM都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题);  (3)两个方法都可以增加不同的正则化项,如L1、L2等等。所以在很多实验中,两种算法的结果是很接近的。2、LR和SVM有什么不同点  (1)本质上是其loss function不同;  区别在于逻辑回归采用的是Logis
  • 1
  • 2
  • 3
  • 4
  • 5