OpenCV 霍夫变换与轮廓提取3. 霍夫变换3.1 霍夫直线3.2 霍夫圆4. 轮廓提取4.1 查找轮廓4.2 绘制轮廓 3. 霍夫变换首先放上霍夫变换官方文档:[霍夫直线变换官网文档]3.1 霍夫直线import cv2 as cv import matplotlib.pyplot as plt import numpy as np # 1. 将图片以灰度的方式读取进来 img = cv.i
文章目录一、寻找轮廓findContours()1.要层次hierarchy2.不要层次hierarchy3.轮廓就是点集二、绘制轮廓drawContours()三、寻找凸包四、使用多边形1.外部矩形边界boundingRect()2.寻找最小包围矩形minAreaRect()3.寻找最小包围圆形minEnclosingCircle()4.用椭圆拟合二维点集fitEllipse()5.逼近多边形
一、OpenCV中的轮廓 图像的上半部分是一张白色背景上的测试图像,包含了一系列标记 A 到 E的区域。寻找到的轮廓被标记为 cX 或 hX, 其中c 代表 “轮廓(contour)”,h 代表 “孔(hole)”(也可以理解为内轮廓)。 同样,左图是原始图片,右图是寻找到的轮廓,它也采用了类似的标注方法。 二、函数调用细节 寻找轮廓的主要函数是 cv::
目录一、轮廓的绘制的作用二、内容介绍三、代码实现一、轮廓的绘制的作用用于图形分析和处理:轮廓是图像中物体边界的描绘,通过绘制轮廓,我们可以更好地分析和理解图像中的物体和形状。例如,轮廓可用于识别和区分不同的对象、测量物体的面积和周长等。辅助机器视觉和物体识别:轮廓可以帮助计算机视觉系统(如机器人、自动驾驶车辆等)更好地识别和理解其环境。例如,通过轮廓,系统可以识别出不同的人、物体或道路标志。特征提
轮廓特征目标查找轮廓的不同特征,例如面积,周长,重心,边界框等。你会学到很多轮廓相关函数矩   图像的矩可以帮助我们计算图像的质心,面积等。详细信息请查看维基百科Image Moments。   函数 cv2.moments() 会将计算得到的矩以一个字典的形式返回。如下:# -*- coding: utf-8 -*- """ Created on Sun Jan 12 18:30:17 2014
/* Hu轮廓匹配: #include "Opencv_MatchShape.h" #include "Match_Shape_NCC.h" int main(int argc, char* argv) { Opencv_MatchShape demo; demo.MatchShape_HU(); system("pause"); return 0; } */ #include <io
 一、什么是层次结构通常我们使用函数cv.findContours()在图片中查找一个对象。有时对象可能位于不同的位置。还有一些情况,一个形状在另外一个形状的内部。这种情况下我们称外部的形状为父,内部的形状为子。按照这种方式分类,一副图像中的所有轮廓之间就建立父子关系。  让我们来看一个简单的例子: 在这个图中,我给这几个形状编号为0-5,2和2a分别代表最
转载 2023-11-02 10:42:23
92阅读
OpenCV 轮廓基本特征  分类: OpenCV(35)  一、概述       我们通过cvFindContours( )函数获取得图像轮廓有何作用呢?一般来说,我们对轮廓常用的操作有识别和处理,另外相关的还有多种对轮廓的处理,如简化或拟合轮廓,匹配轮廓到模板,等等。
一、概述  使用发现并绘制轮廓比较简单,只需要调用findContours和drawContours两个方法就行了,但前提是要对图像做一下预处理。  实现步骤如下:  1.将原图转换为灰度图像  2.执行二值分割  3.去除无用的噪声  4.发现轮廓  5.绘制轮廓  6.展示轮廓图二、示例代码  Mat src = imread(inputImagePath); imshow("原始图"
转载 2023-06-30 23:56:28
406阅读
目录前言:本篇学习内容:1.绘制图像轮廓参考文献: 前言:笔者目前在校本科大二,有志于进行计算机视觉、计算机图形学方向的研究,准备系统性地、扎实的学习一遍OpenCV的内容,故记录学习笔记,同时,由于笔者同时学习数据结构、机器学习等知识,会尽量根据自己的理解,指出OpenCV的应用,并在加上自己理解的前提下进行叙述。 若有不当之处,希望各位批评、指正。本篇学习内容:1.绘制图像轮廓1.绘制图像轮
目标了解轮廓是什么。学习查找轮廓,绘制轮廓等。 cv2.findContours(),cv2.drawContours() 什么是轮廓?轮廓可以简单地解释为连接具有相同颜色或强度的所有连续点(沿边界)的曲线。轮廓是用于形状分析以及对象检测和识别的有用工具。为了获得更高的准确性,请使用灰度图像。因此,在找到轮廓之前,请应用阈值或canny边缘检测从OpenCV 3.2开始,cv2.findConto
在图像中寻找轮廓 目标在这个教程中你将学到如何: 使用OpenCV函数 findContours 使用OpenCV函数 drawContours 原理 例程教程的代码在下面给出. 你也可以从 这里 下载 #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc
目标 • 理解什么是轮廓 • 学习找轮廓,绘制轮廓等 • 函数:cv2.findContours(),cv2.drawContours()轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同 的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。 • 为了更加准确,要使用二值化图像。在寻找轮廓之前,要进行阈值化处理 或者Canny 边界检测。 • 查找轮廓的函数会修改原始图像。如
转载 2023-10-09 14:49:25
154阅读
本篇文章接上一篇轮廓检测继续学习,本篇主要记录轮廓特征的学习。查找轮廓的不同特征,例如面积,周长,质心,边界框等将会学到大量与轮廓有关的函数。1.矩图像的矩可以帮助我们计算图像的质心,面积等。函数 cv2.moments() 会将计算得到的矩以一个字典的形式返回。 根据这些矩的值,我们可以计算出对象的重心:以下图为例: 代码如下:# -*- coding: utf-8 -*- # @Time
轮廓发现与绘制一般而言,图像的轮廓都是由一系列的像素点构成,这些像素点属于二值图像的前景图像,每个轮廓都是一组点,而各组点则组成了轮廓。该方式的原理很复杂,简述即通过定义一系列的边缘点类型与拓扑集合结构类型,然后对二值图像的扫描来完成边缘类型的寻找与拓扑结构的构建,以此完成轮廓的发现。轮廓发现的函数声明如下:findContours(image, contours, hierarchy, mode
接着上一个博客:关于 Python opencv 使用中的 ValueError: too many values to unpack()介绍cv2.findContours函数在opencv2和opencv3中区别以及应用。cv2.findContours函数是一个图像轮廓的绘制方法,进行轮廓的检测Opencv2 cv2.findContours 轮廓检测这个函数在图像处理里面是经常应用到的,记
截至到本次教程,我们已经基本掌握了OpenCV常用的一些功能,实际上已经可以处理很多问题了,故从本教程开始,示例代码将编写为一个固定函数,以便调用,另外将不再给出完整代码,比如导入库将不再另行贴出,一些基本的代码也不再贴出,只贴出核心部分,我会将核心部分整理为一个方便调用的函数。我们在前面讨论了轮廓的特征以及属性,今天我们将综合之前学的内容讨论轮廓的高级功能。凸缺陷对象上的任何凹陷都被称为凸缺陷,
OpenCV 轻松入门 面向Python》 学习笔记计算轮廓时,可能不需要实际的轮廓,而仅需要一个接近于轮廓的近似多边形,Opencv中提供了多种计算轮廓近似多边形的方法。 轮廓拟合1. 矩形包围框 cv2.boundingRect()2. 最小包围矩形框 cv2.minAreaRect()3. 最小包围圆形 cv2.minEnclosingCircle()4. 最优拟合椭圆 cv2.fitEl
1.轮廓提取 FindContours在二值图像中寻找轮廓 int cvFindContours( CvArr* image,                     CvMemStorage* storage,                     CvSeq** first_contour,                       &nb
针对物体轮廓opencv还提供了一些相关的函数,来处理轮廓查找,绘制,拟合,以及计算轮廓周长和面积等,详细介绍如下:1. 寻找和绘制轮廓 opencv的findContours()能寻找图片中的轮廓,实现的是下面论文的算法: Satoshi Suzuki and others. Topological structural analysis of digitized binary images
  • 1
  • 2
  • 3
  • 4
  • 5