使用 tensorflow.keras 进行逻辑回归1. 加载数据2. 可视化数据3. 创建模型4. 开始训练5. 使用训练好的模型进行预测6. 完整源代码附录1. 关于 全连接层[`tf.keras.layers.Dense()`](https://tensorflow.google.cn/api_docs/python/tf/keras/layers/Dense?hl=zh-CN)1. 关于
### 使用PyTorch实现LSTM回归的步骤指南 在本文中,我们将一步一步地学习如何使用PyTorch来实现LSTM模型进行回归任务。LSTM(长短期记忆网络)是一种特殊的RNN(递归神经网络),对于处理序列数据具有良好的表现。我们将先展示整个流程,再逐步讲解每个步骤。 #### 整体流程 下面的表格清晰地展示了实现LSTM回归的主要步骤: | 步骤 | 任务描述
原创 10月前
488阅读
一些知识点因为RNN太长会导致反向传播时间长效率低,也可能导致梯度消失等问题,所以一般是这样做的,设定一个参数TIME_STEPS,说明一个RNN网络由多少个时间点组成。再重新说明下概念,一个RNN网络由很多个时间点组成,这里我们的时间点个数为TIME_STEPS,同时,一个时间点有batch_size个单元cell(这个单元可以是最简单的RNN单元,也可以是LSTM单元,也可以是GRU单元),并
相关知识1、分类问题不同于线性回归,是输出属于每一个类别的概率。概率最大的就是最后的类别。 2、sigmoid函数 使用sigmoid函数将线性回归里的输出值[-无穷,+无穷]映射到[0,1]。 其他的sigmoid函数:这些函数满足的条件: 函数值有极限、都是单调的增函数、都是饱和函数。 逻辑回归模型: 损失函数的变化: 这里使用的是交叉熵损失,交叉熵损失描述的的是两个分布之间的差异,越大越好,
PyTorch 学习笔记这篇文章是我学习 PyTorch 过程中所记录的学习笔记汇总,包括 25 篇文章,是我学习 PyTorch点击查看在线电子书:https://pytorch.zhangxiann.com/学习笔记的结构遵循课程的顺序,共分为 8 周,循序渐进,力求通俗易懂。代码配套代码:https://github.com/zhangxiann/PyTorch_Practice所有代码均在
《第5讲-回归分析-Matlabppt课件》由会员分享,可在线阅读,更多相关《第5讲-回归分析-Matlabppt课件(125页珍藏版)》请在人人文库网上搜索。1、第五讲 数据拟合回归分析,回归一词的由来,谢中华 天津科技大学,2021/2/16,相关与回归分析概述 线性回归 非线性回归 回归分析的Matlab函数,主要内容,变量间的关系,确定性关系或函数关系 y=f (x,人的身高和体重 家庭的
一、LSTM处理回归问题  使用create_dataset()函数来生成数据集,利用本月人数来预测下月人数。   使用Scikit-Learn中的MinmaxScaler预处理类对数据集进行归一元处理,将数据缩放到0~ 1.   LSTM是输入数据具有以下形式的特定阵列结构:[样本,时间步长,特征]。在create_dataset()函数中生成的数据集采用以下形式:[样本,特征],使用numpy
使用LSTM网络做预报(Forecast)在一次小小的比赛中需要做趋势预测,当时找了很多种方法,最后也对LSTM的使用做出一定的研究,现在大多数能找到的都是Predict,对于Forecast的做法虽然找到了原理,但由于各种原因自己未能很好写出。最后是完成了,这里也做一个小小的记录。LSTM完全不想解释,因为只是调包侠,原理还不懂,调参都是手动调的,很离谱。代码导入基础模块,preprocessi
6. 使用LSTM递归神经网络进行时间序列预测任务: 建立循环网络, 对时间序列的数据进行学习预测数据集: 1949年1月至1960年12月,即12年,144次数据记录, 每个月飞机的乘客数量。数据形式如下: 一.LSTM回归网络 ## 2019.11.1# time_step = 1 lstm-cell个数# n_inputs = 1 输入大小, 也就是look-back
文章目录基本简介模型构建与编译区别 cell state 和 hidden statekeras 中设置两种参数的讨论完整代码: 基本简介LSTM_learn 使用Keras进行时间序列预测回归问题的LSTM实现数据 数据来自互联网,这些数据用于预测航空公司的人数,我们使用LSTM网络来解决这个问题 关于此处模型构建,只对keras部分代码做重点的介绍模型构建与编译def build_model
目录一、线性回归概念二、特征方程三、求解方法1、最小二乘法(LSM)2、梯度下降四、优化方法1、数据归一化/标准化2、过拟合的处理3、欠拟合的处理4、正则化介绍       五、评价指标1、代价函数:2、R方系数六、案例实战代码一、线性回归概念       
注解: fun_data()函数生成训练数据和标签,同时生成测试数据和测试标签 HIDDEN_SIZE = 128,使用128维的精度来定义LSTM的状态和输出精度,就是LSTM中的h,clstm_model()函数定义了一个可重入的模型, 分别由评估函数和训练函数调用,在训练前使用空模型预测并输出未训练数据并可视化 通过with tf.variable_scope("lstm_model",r
转载 9月前
189阅读
使用 tensorflow.keras 进行线性回归1. 加载数据2. 可视化数据3. 创建模型4. 开始训练5. 使用训练好的模型进行预测6. 完整源代码附录1. 关于 全连接层[`tf.keras.layers.Dense()`](https://tensorflow.google.cn/api_docs/python/tf/keras/layers/Dense?hl=zh-CN)1. 关于
写在前面:打算记录一下很常见的backbone网络,本篇博客用于记录自己ResNet网络的学习过程。 论文传送门:Deep Residual Learning for Image Recognition一、ResNet网络做了什么1、提出 Residual 结构(残差结构),并搭建超深的网络结构 我们在搭建更深层网络时,并不是简单堆叠就能取得比较好的效果的。 如上图,56层的网络效果反而更差,这是
转载 2024-04-23 15:16:30
136阅读
import numpy as np import pandas as pd对数据集操作data=pd.read_csv(r"F:\数据集\Iris数据集\iris.csv") #删除Unnamed: 0与Species对应的列(特征),因为现在进行回归预测,类别信息就没有用处了 data.drop(["Unnamed: 0","Species"],axis=1,inplace=True) #删除
线性回归代码。具体要求如下: (1)回归函数为:x^2-0.5 + noisy (2)神经网络的层数、节点数目、激活函数自定义。(记录心得) (3)使用tensorboard把计算图显示出来。 (4)使用matplotlib.pyplot把拟合情况画出来。 一、初始数据如下: 线性回归函数:x^2-0.5 + noisy step_num = 400 lr = 0.01 batch_s
Transformer采用自注意力机制,与一般注意力机制计算分配值的方法基本相同,原理可参考 只是!Query的来源不同,一般AM中的query来源于目标语句,而self-AM的query来源于源语句本身。Encoder模块中自注意力机制计算步骤如下:把输入单词转换为带时序信息的嵌入向量 x(源单词的词嵌入 + 对应的Position Encoding);根据嵌入向量 x 生成 q、k、v 三个
## PyTorch LSTM回归模型 在深度学习中,循环神经网络(RNN)是一种非常常见的神经网络结构,它适用于需要考虑时间序列信息的任务。其中,长短期记忆网络(LSTM)是一种特殊的RNN,能够更好地处理长序列信息和避免梯度消失问题。在PyTorch中,我们可以使用LSTM模型进行回归任务,例如根据历史数据预测未来趋势。 ### LSTM模型代码示例 ```python import t
原创 2024-04-08 04:17:00
164阅读
数据预处理import numpy as np import pandas as pd data = pd.read_csv('../KNN分类/iris.csv') # print(data) # 删除不需要的ID和Species列 因为需要进行回归预测 类别信息就没有用处了 data.drop(['ID','Species'],axis=1,inplace=True) # print(d
1 简介支持向量机基本上是最好的有监督学习算法了。最开始接触SVM是去年暑假的时候,老师要求交《统计学习理论》的报告,那时去网上下了一份入门教程,里面讲的很通俗,当时只是大致了解了一些相关概念。这次斯坦福提供的学习材料,让我重新学习了一些SVM知识。我看很多正统的讲法都是从VC 维理论和结构风险最小原理出发,然后引出SVM什么的,还有些资料上来就讲分类超平面什么的。这份材料从前几节讲的logist
  • 1
  • 2
  • 3
  • 4
  • 5