注解: fun_data()函数生成训练数据和标签,同时生成测试数据和测试标签 HIDDEN_SIZE = 128,使用128维的精度来定义LSTM的状态和输出精度,就是LSTM中的h,clstm_model()函数定义了一个可重入的模型, 分别由评估函数和训练函数调用,在训练前使用空模型预测并输出未训练数据并可视化 通过with tf.variable_scope("lstm_model",r
转载 9月前
189阅读
本文就R-CNN论文精读中 的预测回归(Bounding box regression)问题进行详细讨论。R-CNN将候选框提取出来的特征向量,进行分类+偏移预测的并行处理。 偏移预测预测回归(Bounding box regression)问题,我们需要将生成的候选框进行位置、大小的微调。(图摘自b站up“同济子豪兄”的R-CNN论文解读) 我们需要思考这样一个问题:为什么加入这一个Reg
PyTorch 学习笔记这篇文章是我学习 PyTorch 过程中所记录的学习笔记汇总,包括 25 篇文章,是我学习 PyTorch点击查看在线电子书:https://pytorch.zhangxiann.com/学习笔记的结构遵循课程的顺序,共分为 8 周,循序渐进,力求通俗易懂。代码配套代码:https://github.com/zhangxiann/PyTorch_Practice所有代码均在
使用LSTM网络做预报(Forecast)在一次小小的比赛中需要做趋势预测,当时找了很多种方法,最后也对LSTM的使用做出一定的研究,现在大多数能找到的都是Predict,对于Forecast的做法虽然找到了原理,但由于各种原因自己未能很好写出。最后是完成了,这里也做一个小小的记录。LSTM完全不想解释,因为只是调包侠,原理还不懂,调参都是手动调的,很离谱。代码导入基础模块,preprocessi
一、LSTM处理回归问题  使用create_dataset()函数来生成数据集,利用本月人数来预测下月人数。   使用Scikit-Learn中的MinmaxScaler预处理类对数据集进行归一元处理,将数据缩放到0~ 1.   LSTM是输入数据具有以下形式的特定阵列结构:[样本,时间步长,特征]。在create_dataset()函数中生成的数据集采用以下形式:[样本,特征],使用numpy
文章目录基本简介模型构建与编译区别 cell state 和 hidden statekeras 中设置两种参数的讨论完整代码: 基本简介LSTM_learn 使用Keras进行时间序列预测回归问题的LSTM实现数据 数据来自互联网,这些数据用于预测航空公司的人数,我们使用LSTM网络来解决这个问题 关于此处模型构建,只对keras部分代码做重点的介绍模型构建与编译def build_model
6. 使用LSTM递归神经网络进行时间序列预测任务: 建立循环网络, 对时间序列的数据进行学习预测数据集: 1949年1月至1960年12月,即12年,144次数据记录, 每个月飞机的乘客数量。数据形式如下: 一.LSTM回归网络 ## 2019.11.1# time_step = 1 lstm-cell个数# n_inputs = 1 输入大小, 也就是look-back
一些知识点因为RNN太长会导致反向传播时间长效率低,也可能导致梯度消失等问题,所以一般是这样做的,设定一个参数TIME_STEPS,说明一个RNN网络由多少个时间点组成。再重新说明下概念,一个RNN网络由很多个时间点组成,这里我们的时间点个数为TIME_STEPS,同时,一个时间点有batch_size个单元cell(这个单元可以是最简单的RNN单元,也可以是LSTM单元,也可以是GRU单元),并
        在自然语言处理中会有这样一种情况:句子的前后之间有着某种关联。而有着这种关联的句子如果在适当的模型中进行训练就能够实现预测下一个词出现的可能性。但典型的CNN网络并不能通过训练获取这种前后关联的时序关系,它不能保持之前所习得的知识。而RNN就解决了这个问题,RNN(Recurrent Neural Network
目录一、线性回归概念二、特征方程三、求解方法1、最小二乘法(LSM)2、梯度下降四、优化方法1、数据归一化/标准化2、过拟合的处理3、欠拟合的处理4、正则化介绍       五、评价指标1、代价函数:2、R方系数六、案例实战代码一、线性回归概念       
1、其中LRN就是局部响应归一化:这个技术主要是深度学习训练时的一种提高准确度的技术方法。其中caffe、tensorflow等里面是很常见的方法,其跟激活函数是有区别的,LRN一般是在激活、池化后进行的一中处理方法。        AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中。AlexN
转载 2024-04-28 20:20:44
52阅读
0510 RNN的东西不会去忘记,直接一串子全部保留下来 Lstm 长短时记忆  可以控制这个参数也是需要去训练 逐渐优化 得到的门单元ft 遗忘门   it 保留门输入经过了一个遗忘门,经过了一个保留门选择性的遗忘和保留  是随时更新ct的状态的 从开始更新到结束 Classification and Location 分类与
转载 2024-03-17 10:41:27
142阅读
1.生成R_net数据集,并喂入R_net网络训练为了提高R_net数据的质量,我们的R_net数据集会通过P_net精炼一下。把回归框中对应的图片从原理图片中crop出来,resize生成24*24的大小。运行P_Net,得到每个回归框的分类得分和坐标的回归值。P_Net中推理出来的 bounding box 坐标可能超出元素图片的大小,这时候需要做图片处理,把坐标值限定在元素图片内,而空出来的
转载 2024-03-31 20:23:59
56阅读
研一上对CNN学习过一段时间,现在要用到论文里面,所以对此进行复习。 附上链接:http://cs231n.github.io/convolutional-networks/#case普通神经网络的参数太多,所以要使用卷积神经网络,其次因为卷积神经网络输入是图片,是三维结构,每一过程都是三维结构。 使用Relu的作用:Relu是一个激活函数,使用它可以让模型实现非线性分类。使用Local Resp
转载 2024-04-01 08:23:21
68阅读
使用 tensorflow.keras 进行逻辑回归1. 加载数据2. 可视化数据3. 创建模型4. 开始训练5. 使用训练好的模型进行预测6. 完整源代码附录1. 关于 全连接层[`tf.keras.layers.Dense()`](https://tensorflow.google.cn/api_docs/python/tf/keras/layers/Dense?hl=zh-CN)1. 关于
机器学习的应用示例分析生产线上的产品图像来对产品进行自动分类 图像分类问题,使用卷积神经网络CNN通过脑部扫描发现肿瘤 语义分割,图像中的每个像素都需要被分类,也是用CNN自动分类新闻、恶意评论标记、长文总结 自然语言处理(NLP),更具体的是文本分类,可以使用循环神经网络(RNN)、CNN或者Transformer基于很多性能指标预测来年收入 回归问题,需要回归模型进行处
前言本文大致分成两大部分,第一部分尝试将本文涉及的分类器统一到神经元类模型中,第二部分阐述卷积神经网络(CNN)的发展简述和目前的相关工作。本文涉及的分类器(分类方法)有:线性回归逻辑回归(即神经元模型)神经网络(NN)支持向量机(SVM)卷积神经网络(CNN)从神经元的角度来看,上述分类器都可以看成神经元的一部分或者神经元组成的网络结构。各分类器简述逻辑回归说逻辑回归之前需要简述一下线性回归。图
概述NSGA2是一种基于非支配排序的遗传算法,可用于求解多目标优化问题[1]。在NSGA2中,种群初始化后, 基于非支配排序方法,种群中的个体被分成多个前沿组。第一个前沿组中的个体是完全非支配个体,它们的rank值被赋为1。第二个前沿组中个体受第一个前沿组中的个体支配,它们的rank值被赋为2。其余前沿组中个体依次类推 。NSGA2引入拥挤距离(crowding distance)作为评判个体与相
转载 10月前
71阅读
(1)消除li 前面的点 使用   ul {list-style:none; }并且ul之外会有一个容器,nav等 利用margin值保持和其他元素的等高度。 (2) <h1>回归自然</h1> <p></p> <p></p> <p></p> <p><
转载 10月前
5阅读
1 简介2 问题3 数据分析4 数据处理5 lstm模型6 训练模型7 预测结果 详细代码见github: https://github.com/pjgao/lstm_helloworld/1 简介针对时间序列预测问题传统方法如ARIMA算法来拟合序列,综合考虑趋势、循环、季节等因素。 随着深度学习的飞速发展,基于RNN的方法在时间序列中的应用越来越广泛。 本文使用air passenger
  • 1
  • 2
  • 3
  • 4
  • 5