对于生存数据,1958年,E. L. Kaplan 和 Paul Meier 两位教授介绍了一种全新的、解决随访期间右删失 (right censoring) 问题的生存分析方法,被称作Kaplan-Meier方法。这种方法精确地记录并利用每个个体发生终点事件的具体时间,在任何一个终点事件发生的时间点计算出一个新的、基于之前所有信息的总生存率 (Cumulative survival) 。&nbs
转载
2023-08-03 22:03:56
97阅读
# Logrank检验在Python中的实现
## 1. 简介
Logrank检验是一种用于比较两个生存曲线是否有显著差异的统计方法。它广泛应用于医学、生物学和社会科学等领域,用于分析生存数据的差异。在本文中,我们将介绍如何使用Python实现logrank检验。
## 2. 准备工作
在进行logrank检验之前,我们需要先安装一些必要的Python库。下面是一些常用的库及其安装命令:
`
原创
2023-11-02 15:14:10
489阅读
# Python生存曲线绘制与Logrank检验
## 引言
生存分析是一种用于分析时间到事件数据的统计方法,通常用于医学、流行病学及生物统计等领域。生存曲线的绘制可以展示不同组别在时间上的生存状况,而Logrank检验则用于比较两组或多组之间生存曲线的差异。本文将运用Python进行生存曲线的绘制,并进行Logrank检验,帮助读者更好地理解这两种重要的统计分析方法。
## 工具与库的准备
Kaplan Meier,是一种单因素生存分析。它可用于研究1个因素对于生存时间的影响,在医疗领域中使用广泛。一、案例说明当前某研究人员拟观察一种新型癌症药物的疗效情况,首先将100名癌症患者随机分成两组,对照组使用传统治疗方式,实验组使用新式药物治疗方式。并且随访时间为2年。并且以‘是否死亡’为作为结局。希望通过研究了解到新式药物是否对于生存时间带来影响。药物组别:0代表传统治疗组;1代表新药组
转载
2024-09-29 21:36:25
198阅读
生存率是我们生存分析的重要结果。后台有粉丝问我如何使用SPSS计算患者3年或5年的生存率,SPSS计算患者生存率还是比较简单的,有两种方法可以计算,我们一一来演示。继续使用我们的乳腺癌数据,首先把数据导入 我们来看一下数据 age表示年龄,pathsize表示病理肿瘤大小(厘米),lnpos表示腋窝淋巴结阳性,histgrad表示病理组织学等级,er表示雌激素受体状态,pr表示孕激素受体状态,st
转载
2023-10-16 19:46:49
376阅读
生存分析:将事件的结果(终点事件)和出现这一结果所经历的时间结合起来的一种统计分析方法。生存分析的目的:1.生存率比较:估计处理组和对照组n年的生存率和中位生存期。2.生存曲线比较:比较处理组和对照组的生存率是否有差别。3.影响因素分析:分析变量与生存结局/事件的关系。4.生存预测:根据变量预测患者n年的生存率。从生存分析的方法上看,一般可以分为三类:1.参数法:知道生存时间的分布模型,然后根据数
转载
2023-06-16 10:11:33
1552阅读
White检验是一种用于检验线性回归模型中误差项同方差的统计方法。这种检验方法可以在各种数据分析场景下被广泛应用,如金融分析、市场研究和工程学。然而,如何在Python中实现White检验,则是许多数据科学家在数据建模过程中的一个常见挑战。本文将详细记录解决“White检验检验 python”问题的过程,包括背景描述、技术原理、架构解析、源码分析、性能优化和案例分析。
### 背景描述
在20
一、背景 在某些场景下我们要判断一个事件能存活多久,这时候我们就需要使用生存分析相关的方法。例如,一些实验中小白鼠在某个时间段的生存概率;或者在日常的打车场景中,一个乘客呼叫了订单,这个订单在等待时间段中的存活概率。 二、风险函数、生存函数与删失数据 假设一个乘客发了一个打车订单,那么在不同时间点被乘客取消的概率密度函数则为风险函数(Hazard Function), 不取消的概率密
转载
2024-04-12 22:14:18
168阅读
【导读】在之前的《数据挖掘概念与技术 第2章》的文章中我们介绍了Q-Q图的概念,并且通过调用现成的python函数, 画出了Q-Q图, 验证了Q-Q图的两个主要作用,1. 检验一列数据是否符合正态分布 2. 检验两列数据是否符合同一分布。本篇文章将更加全面的为大家介绍QQ图的原理以及自己手写函数实现画图过程Q-Q图是什么QQ图是quantile-quantile(分位数-分位数图) 的简称,上面也
转载
2023-08-02 19:20:27
120阅读
统计性检验本文分为四个部分:正态性检验相关性检验参数统计假设检验非参数统计假设检验 1.正态性检验本部分列出了可用于检查数据是否具有高斯分布的统计检验。w检验(Shapiro-wilk test)检验数据样本是否具有高斯分布。from scipy.stats import shapiro
data = [21,12,12,23,19,13,20,17,14,19]
stat,p = sh
转载
2023-10-07 16:46:30
176阅读
基于Fisher准则的线性分类器设计已知有两类数据和二者的先验概率,已知P(w1)=0.6,P(w2)=0.4。 W1和W2类数据点的对应坐标分别为: x1=0.23 1.52 0.65 0.77 1.05 1.19 0.29 0.25 0.66 0.56 0.90 0.13 -0.54 0.94 - 0.21 0.05 -0.08 0.73 0.33 1.06 -0.02 0.11 0.31 0
转载
2023-11-28 20:08:30
88阅读
导入相关库:导入数据为了开始执行离群值测试,我们将导入一些每10分钟采样的平均风速数据说明:在任何数据集中, outlier都是与其他数据点不一致的基准点。 如果从特定分布采样的数据具有高概率,则异常值将不属于该分布。 如果特定点是异常值,则有各种测试用于测试,这是通过常态测试中使用的相同的空假设测试来完成的。Q测试Dixon的Q-Test用于帮助确定是否有证据表明某个点是一维数据集的异常值。 假
转载
2023-07-27 12:11:56
127阅读
我们前面讲了异方差,也讲了怎么用图示法来判断是否有异方差,这一篇来讲讲怎么用统计的方法来判断有没有异方差。关于检验异方差的统计方法有很多,我们这一节只讲比较普遍且比较常用的white test(怀特检验)。假设现在我们做了如下的回归方程:如果要用怀特检验检验上述方程有没有异方差,主要分以下几个步骤:1.step1:对方程进行普通的ols估计,可以得到方程的残差ui。2.step2:以第一步估计估计
转载
2023-08-30 19:25:03
554阅读
因为写代码的缘故,经常会去看Stack Overflow网站,国内非程序员同学可能对这个网站比较陌生,但在英文世界里,这可是最大的IT技术问答网站,有最权威、最及时、最丰富的技术问题Q&A。 所谓“编程不识Stack Overflow,纵称程序员也枉然”,Stack Overflow也算是国内程序员最常逛的网站之一,为什么这么受欢迎呢?我觉得有5点:1、Stack Overflow是英文
转载
2024-06-25 10:50:02
28阅读
t 检验是一种统计技术,可以告诉人们两组数据之间的差异有多显著。它通过将信号量(通过样本或总体平均值之间的差异测量)与这些样本中的噪声量(或变化)进行比较来实现。有许多有用的文章会告诉你什么是 t 检验以及它是如何工作的,但没有太多材料讨论 t 检验的不同变体以及何时使用它们。本文将介绍 t 检验的 3 种变体以及何时使用它们以及如何在 Python 中运行它们。单样本 t 检验单样本 t 检验将
转载
2023-07-29 21:13:22
175阅读
图片工具检查图片是否损坏日常工作中,时常会需要用到图片,有时候图片在下载、解压过程中会损坏,而如果一张一张点击来检查就太不Cool了,因此我想大家都需要一个检查脚本;测试图片,0.jpg是正常的,broke.jpg是手动删掉一点内容后异常的:脚本运行结果:代码如下:# 从本地判断图片是否损坏
def is_valid_image(path):
'''
检查文件是否损坏
'''
try:
bVali
转载
2023-09-21 01:35:48
105阅读
http://ilian.i-n-i.org/python-interview-question-and-answers/http://www.geekinterview.com/Interview-Questions/Programming/Pythonhttp://www.reddit.com/r/Python/comments/1knw7z/python_interview_question
转载
2023-11-06 17:33:12
209阅读
作者|Satyam Kumar编译|VKQ-Q图是检验任何随机变量(如正态分布、指数分布、对数正态分布等)分布的图形方法,是观察任何分布性质的一种统计方法。例如,如果给定的一个分布需要验证它是否是正态分布,我们运行统计分析并将未知分布与已知正态分布进行比较。然后通过观察Q-Q图的结果,我们可以确定给定的分布是否正态分布。绘制Q-Q图的步骤:给定一个未知的随机变量。找到每个百分位值生成一个已知的随机
转载
2023-09-12 17:01:28
113阅读
图 | 源网络
文 | 5号程序员
数据假设检验是数理统计学中根据一定假设条件由样本推断总体的一种方法。那我们啥时候会用到假设检验呢?大多数情况下,我们无法分辨事物的真伪或者某种说法是否正确,这时就需要进行假设,然后对我们的假设进行检验。比如,我们想知道被告人是不是有罪,就可以通过假设检验进行判断。基本思路包括4步逻辑:问题是什么?→证据是什么?→
转载
2023-08-23 20:07:37
140阅读
实验七、缺陷检测一、 题目描述 对下面的图片进行缺陷检测操作,请详细地记录每一步操作的步骤。 第一站图片是标准样品,后面几张图中有几个样品有瑕疵,需要你通过计算在图片上显示出哪张是合格,哪张不合格。 **1.思路** Python-Opencv中用compareHist函数进行直方图比较进而对比图片图像直方图图像直方图是反映一个图
转载
2023-09-29 22:01:33
75阅读